Types
Names

- Names refer to different kinds of entities in programs, such as variables, functions, classes, templates, modules,
- Names can be reserved or user-defined
- Names can be bound statically or dynamically
- Name bindings have a scope: the program area where they are visible
Variables

- Essentially, variables are bindings of a name to a memory address.
- They also have a type, value, scope, and lifetime.
- Bindings can be
 - dynamic (occur at run time), or
 - static (occur prior to run time)
- What are the scopes of names here, when are variables bound to types and values, and what are their lifetimes?

```cpp
const int d = 400;
void f() { double d = 100;
    { double d = 200; std::cout << d;}
    std::cout << d;
}
double g() { return d+1;}
```
Scope

- Scope is a property of a name binding
- The scope of a name binding are the parts of a program (collection of statements, declarations, or expressions) that can access that binding
- Static/lexical scoping
 - Binding’s scope is determined by the lexical structure of the program (and is thus known statically)
 - The norm in most of today’s languages
 - Efficient lookup: memory location of each variable known at compile-time
 - Scopes can be nested – inner bindings hide the outer ones
namespace std {
 ...
}

namespace N {
 void f(int x) {}
 class B {
 void f (bool b) {
 if (b)
 {
 bool b = false; // confusing but OK
 std::cout << b;
 }
 }
 }
};
Dynamic Scoping

- Some versions of LISP have dynamic scoping
- Variable’s binding is taken from the most recent declaration encountered in the execution path of the program
- Macro expansion of the C preprocessor gives another example of dynamic scoping
- Makes reasoning difficult. For example,

```c
#define ADD_A(x) x + a
void add_one(int *x) {
    const int a = 1;
    x = ADD_A(x);
}

void add_two(int *x) {
    const int a = 2;
    x = ADD_A(x);
}
```
l- and r-values

Depending on the context, a variable can denote the address (l-value), or the value (r-value)

```c
int x;
x = x + 1;
```

Some languages distinguish between the syntax denoting the value and the address, e.g., in ML

```ml
x := !x + 1
```

From type checking perspective, l- or r-valueness is part of the type of an expression
Lifetime

- Time when a variable has memory allocated for it
- Scope and lifetime of a variable often go hand in hand
- A variable can be hidden, but still alive

```cpp
void f (bool b) {
    if (b) {
        bool b = false; // hides the parameter b
        std::cout << b;
    }
}
```

- A variable can be in scope, but not alive

```cpp
A* a = new A();
A& aref = *a;
delete a;
std::cout << aref; // aref is not alive, but in scope
```
Variable-Type Binding

Types can be bound to variables statically or dynamically

Static:

```
string x = "Hi";
x = 1.2; // error
```

Dynamic:

```
string x = "Hi";
x = 1.2; // OK
```

Static binding may or may not require annotations

```
let x = 5
    x = 5.5 - error
in x + 1
```
Types and Type Systems

- Types are collections of values (with operations that can apply to them)
- At the machine level, values are just sequences of bits
- Is this 0100 0000 0101 1000 0000 0000 0000 0000
 - floating point number 3.375?
 - integer 1079508992?
 - two short integers 16472 and 0?
 - four ASCII characters @ X NUL NUL?
- Programming at machine-level (assembly) requires that programmer keeps track of what are the types of each piece of data
- Type errors (attempting an operation on a data type for which the operation is not defined) hard to avoid
- Goal of type systems is to enable detection of type errors – reject meaningless programs
Languages with some type system, but unsound

• C, C++, Eiffel
• Reject most meaningless programs:
  ```
  int i = 1; char* p = i;
  ```
• but allow some:
  ```
  union {
    char* p;
    int i;
  } my_union;
  void foo() {
    my_union.i = 1;
    char* p = my_union.p;
    ...
  }
  ```
Sound Type System: Java, Haskell

- Reject some meaningless programs at compile-time:
  ```java
  Int i = "Erroneous";
  ```
- Add checks at run-time so that no program behavior is undefined

```java
interface Stack
{
    void push(Object elem);
    Object pop();
}

class MyStack 
{
    ...
}

Stack s = new MyStack();
s.push(1);
s.push("whoAreYou...");
Int i = (Int) s.pop(); // throws an exception
```
Dynamic (but Sound) Type System

- Scheme, Javascript

- Reject no syntactically correct programs at compile-time, types are enforced at run-time:

  ```
  (car (cons 1 2)) ; ok
  (car 5)          ; error at run-time
  ```

- Straightforward to define the set of safe programs and to detect unsafe ones
Type Systems

Common errors -- examples of operations that are outlawed by type systems:

- Add an integer to a function
- Assign to a constant
- Call a non-existing function
- Access a private field

Type systems can help:

- in early error detection
- in code maintenance
- in enforcing abstractions
- in documentation
- in efficiency
Type Systems Terminology

Static vs. dynamic typing

- Whether type checking is done at compile time or at run time

Strong vs. weak typing

- Sometimes means no type errors at run time vs. possibly type errors at run time (type safety)
- Sometimes means no coercions vs. coercions (implicit type conversion)
- Sometimes even means static vs. dynamic
Type Systems Terminology (Cont.)

Type inference

- Whether programmers are required to manually state the types of expressions used in their program or the types can be determined based on how the expr’s are used

- E.g., C requires that every variable be declared with a type; Haskell infers types based on a global analysis
Type Checking in Language Implementation
Let’s step back and look at some theory...
Chomsky Hierarchy

Four classes of grammars that define particular classes of languages

1. Regular grammars
2. Context free grammars
3. Context sensitive grammars
4. Phrase-structure (unrestricted) grammars

• Ordered from less expressive to more expressive (but harder to parse)
• Regular grammars and CF grammars are of interest in theory of programming languages
Regular Grammar

• Productions are of the form
 \[A \rightarrow aB \quad \text{or} \quad A \rightarrow a \]
 where \(A, B \) are nonterminal symbols and \(a \) is a terminal symbol. Can contain \(S \rightarrow \varepsilon \).

• Example regular grammar \(G = (\{A, S\}, \{a, b, c\}, S, P) \), where \(P \) consists of the following productions:
 \[
 \begin{align*}
 S &\rightarrow aA \\
 A &\rightarrow bA \mid cA \mid a
 \end{align*}
 \]

• \(G \) generates which words?
Regular Grammar

- Productions are of the form
 \(A \rightarrow aB \) or \(A \rightarrow a \)
 where \(A, B \) are nonterminal symbols and \(a \) is a terminal symbol. Can contain \(S \rightarrow \epsilon \).

- Example regular grammar \(G = (\{A, S\}, \{a, b, c\}, S, P) \), where \(P \) consists of the following productions:
 \(S \rightarrow aA \)
 \(A \rightarrow bA \mid cA \mid a \)

- \(G \) generates the following words
 \(aa, \ aba, aca, \ abba, \ abca, \ acca, \ abbbba, \ abbca, \ abcba, \ldots \)

The language \(L(G) \) is given by regular a expression:
\[a(b+c)^*a \]
Regular Languages

The following three formalisms all express the same set of (regular) languages:

1. Regular grammars
2. Regular expressions
3. Finite state automata

Not very expressive. For example, the language

\[L = \{ a^n b^n \mid n \geq 1 \} \]

is not regular.

Question: Can you relate this language \(L \) to (parsing) programming languages?
Finite State Automata

A finite state automaton $M = (S, I, f, s_0, F)$ consists of:

- a finite set S of states
- a finite set of input alphabet I
- a transition function $f: S \times I \rightarrow S$ that assigns to a given current state and input the next state of the automaton
- an initial state s_0, and
- a subset F of S consisting of accepting (or final) states
Finite State Automata

A finite state automaton \(M = (S, I, f, s_0, F) \) consists of:

- a finite set \(S \) of states
- a finite set of input alphabet \(I \)
- a transition function \(f: S \times I \rightarrow S \) that assigns to a given current state and input the next state of the automaton
- an initial state \(s_0 \)
- a subset \(F \) of \(S \) consisting of accepting (or final) states

Example:

1. Regular grammar
 \[S \rightarrow aA \]
 \[A \rightarrow bA \mid cA \mid a \]

2. Regular expression
 \[a(b+c)^*a \]

3. FSA

\[S \rightarrow aA \]
\[A \rightarrow bA \mid cA \mid a \]
\[S \rightarrow aA \]
\[A \rightarrow bA \mid cA \mid a \]
\[F \]
Chomsky Hierarchy

Four classes of grammars that define particular classes of languages

1. Regular grammars
2. Context free grammars
3. Context sensitive grammars
4. Phrase-structure (unrestricted) grammars

• Ordered from less expressive to more expressive (but harder to parse)
• Regular grammars and CF grammars are of interest in theory of programming languages
Context Free Grammar

• Productions are of the form
 \[A \rightarrow BC \text{ or } A \rightarrow B \text{ or } A \rightarrow a \]
 where \(A, B, C \) are nonterminal symbols and \(a \) is a terminal symbol. Can contain \(S \rightarrow \varepsilon \). (There are other equiv. definitions.)

• Example cfg \(G' = (\{A, B, C, S\}, \{a, b\}, S, P) \), where \(P \) consists of the following productions:
 \[
 S \rightarrow AC \\
 C \rightarrow SB \\
 A \rightarrow a \\
 B \rightarrow b
 \]
• \(G' \) generates which words?
Formally, the syntax of such expressions is defined by the following context free grammar:

\[
\begin{align*}
\text{expr} & \rightarrow \text{term} \ '++' \ \text{expr} \ | \ \text{term} \\
\text{term} & \rightarrow \text{factor} \ '***' \ \text{term} \ | \ \text{factor} \\
\text{factor} & \rightarrow \text{digit} \ | \ '(\ \text{expr}\ ')' \\
\text{digit} & \rightarrow \ '0' \ | \ '1' \ | \ \ldots \ | \ '9'
\end{align*}
\]
However, for reasons of efficiency, it is important to factorize the rules for $expr$ and $term$:

\[
expr \rightarrow \text{term} \ (\text{'}+\text{' expr} \mid \varepsilon)
\]
\[
term \rightarrow \text{factor} \ (\text{'}*\text{' term} \mid \varepsilon)
\]

Note: The symbol ε denotes the empty string.
It is now easy to translate the grammar into a parser that evaluates expressions, by simply rewriting the grammar rules using the parsing primitives.

That is, we have:

```
expr :: Parser Int
expr  = do t ← term
        do char '+'
           e ← expr
           return (t + e)
        +++ return t
```

```
expr → term ('+' expr | ε)
term → factor ('*' term | ε)
```
term :: Parser Int
term = do f ← factor
 do char '*'
 t ← term
 return (f * t)
 +++ return f

factor :: Parser Int
factor = do d ← digit
 return (digitToInt d)
 +++ do char '('
 e ← expr
 char ')
 return e
Chomsky Hierarchy

Four classes of grammars that define particular classes of languages

1. Regular grammars
2. Context free grammars
3. Context sensitive grammars
4. Phrase-structure (unrestricted) grammars

• Ordered from less expressive to more expressive (but harder to parse)
• Regular grammars and CF grammars are of interest in theory of programming languages
Type Checking in Language Implementation
Type Checking

• CF grammars can capture a superset of meaningful programs
• Type checking makes this set smaller (usually to a subset of meaningful programs)
• What kind of safety properties CF grammars cannot express?
 • Variables are always declared prior to their use
 • Variable declarations unique
 • As CF grammars cannot tie a variable to its definition, must parse expressions “untyped,” and type-check later
• Type checker ascribes a type to each expression in a program, and checks that each expression and declaration is well-formed
Typing Relation

- By “expression t is of type T”, it means that we can see (without having to evaluate t) that when t is evaluated, the result is some value t’ of type T.
- All of the following mean the same:
 - “t is of type T”, “t has type T”, “type of t is T”,
 - “t belongs to type T”
- Notation: t : T or t ∈ T or t :: T (in Haskell)
 more commonly, Γ ⊢ t : T
 where Γ is the context, or typing environment
- What are the types of expression x+y below?

```c
float f(float x, float y) { return x+y; }
int g(int x, int y) { return x+y; }
```
Typing Relation

- By “expression \(t \) is of type \(T \)”, it means that we can see (without having to evaluate \(t \)) that when \(t \) is evaluated, the result is some value \(t' \) of type \(T \)
- All of the following mean the same
 - “\(t \) is of type \(T \)”, “\(t \) has type \(T \)”, “type of \(t \) is \(T \)”
 - “\(t \) belongs to type \(T \)”
 - Notation: \(t : T \) or \(t \in T \) or \(t :: T \) (in Haskell)
 - more commonly, \(\Gamma \vdash t : T \)
 - where \(\Gamma \) is the context, or typing environment
- What are the types of expression \(x+y \) below?

```plaintext
float f(float x, float y) { return x+y; }
int g(int x, int y) { return x+y; }
x : float, y : float \vdash x+y : float
x : int, y : int \vdash x+y : int
```
Type Checker as a Function

Type checker is a function that takes a program as its input (as an AST) and returns true or false, or a new AST, where each sub-expression is annotated with a type, function overloads resolved, etc.

Examples of different forms of type checking functions:

\[
\begin{align*}
\text{checkStmt} &: \text{Env} \rightarrow \text{Stmt} \rightarrow (\text{Bool}, \text{Env}) \\
\text{checkExpr} &: \text{Env} \rightarrow \text{Expr} \rightarrow \text{Type}
\end{align*}
\]
Equivalence of types isn’t trivial

Are the types of a, b, and c the same?

```c
struct pair {  
    int x; int y;
};
struct point {  
    int x; int y;
};
struct {  
    int x; int y;
} a;
pair b; point c;
```
Equivalence of types isn’t trivial

Are the types of a, b, and c the same?

```c
struct pair {
    int x; int y;
};
struct point {
    int x; int y;
};
struct {
    int x; int y;
} a;
pair b; point c;
```

Nominal vs. structural equivalence.
Composite types

The examples above, and the union types are examples of composite types.

- Typically programming languages offer basic types that are directly supported by common processors
 - char, int, float, ...

- Additionally, languages offer type operators and ways to define type operators (ways to construct types from more primitive types)
 - Haskell: `data`, lists, tuples, `->`
 - C++: `class`, arrays, unions

- The selection of type operators varies among languages and also on which of the operators are built-in, which can be implemented as libraries
Composite types

• Haskell’s **data** construct defines a variant or discriminated union type

```
data Contact = Email String | Address Street Zip Town | Tel String
```

The type system guarantees statically that **Email** data can’t be treated as **Tel** data

• C’s union types leaves tracking the kind of value stored to a union to programmer’s responsibility

```
union {
  char* p;
  int i;
} my_union;
```

```
void foo() {
  my_union.i = 1;
  char* p = my_union.p;
  ...
}
```
Defining a Type System

- Informal rules in some natural language
- Using some formal language
- Implementation
Defining a Type System with Informal Rules – Example Type Rules

• All referenced variables must be declared
• All declared variables must have unique names
• The + operation must be called with two expressions of type `int`, and the resulting type is `int`
Defining a Type System with Informal Rules – Example Type Check Statement

• Skip is always well-formed

• An assignment is well-formed if
 • its target variable is declared,
 • its source expression is well-formed, and
 • the declared type of the target variable is the same as the type of the source expression

• A conditional is well-formed if its test expression has type bool, and both then and else branches are well-formed statements
Defining a Type System with Informal Rules – Example Type Check Statement (Cont.)

- A while loop is well-formed if its test expression has type bool, and its body is a well-formed statement.

- A block is well-formed if all of its statements are well-formed.

- A variable declaration is well-formed if the variable has not already been defined in the same scope, and if the type of the initializer expression is the same as the type of the variable.
Defining a Type System Using Formal Language

Common way to specify type systems is using natural deduction style rules – “inference rules”

Example:

\[
\frac{A_1 \ldots A_n}{B}
\]

\[
\frac{A \land B}{B}, \quad \frac{A \Rightarrow B}{B} \quad A
\]
Type Rules – Example

A conditional is well-formed if its test expression has type bool, and both then and else branches are well-formed statements

\[\Gamma \vdash e : \text{bool} \quad \Gamma \vdash s_1 : \text{ok} \quad \Gamma \vdash s_2 : \text{ok} \]

\[\Gamma \vdash \text{if } e \text{ s1 s2 : ok} \]