Functions continued
Outline

- Defining Functions
- List Comprehensions
- Recursion
A Function without Recursion

Many functions can naturally be defined in terms of other functions.

```haskell
factorial :: Int → Int
factorial n = product [1..n]
```

factorial maps any integer n to the product of the integers between 1 and n.

Expressions are evaluated by a stepwise process of applying functions to their arguments. For example:

```haskell
factorial 4
= product [1..4]
= product [1,2,3,4]
= 1*2*3*4
= 24
```
Recursive Functions

Functions can also be defined in terms of themselves. Such functions are called recursive.

factorial 0 = 1
factorial n = n * factorial (n-1)

factorial 3 = 3 * factorial 2
= 3 * (2 * factorial 1)
= 3 * (2 * (1 * factorial 0))
= 3 * (2 * (1 * 1))
= 3 * (2 * 1)
= 3 * 2
= 6

factorial maps 0 to 1, and any other positive integer to the product of itself and the factorial of its predecessor.
Note:

- The base case factorial $0 = 1$ is appropriate because 1 is the identity for multiplication: $1 \times x = x = x \times 1$.

- The recursive definition **diverges** on integers < 0 because the base case is never reached:

  ```
  > factorial (-1)
  Error: Control stack overflow
  ```
Why is Recursion Useful?

- Some functions, such as factorial, are simpler to define in terms of other functions.

- As we shall see, however, many functions can naturally be defined in terms of themselves.

- Properties of functions defined using recursion can be proved using the simple but powerful mathematical technique of induction.
Recursion on Lists

Lists have naturally a recursive structure. Consequently, recursion is used to define functions on lists.

<table>
<thead>
<tr>
<th>product</th>
<th>:: [Int] → Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>product []</td>
<td>= 1</td>
</tr>
<tr>
<td>product (n:ns)</td>
<td>= n * product ns</td>
</tr>
</tbody>
</table>

product maps the empty list to 1, and any non-empty list to its head multiplied by the product of its tail.

\[\text{product [2,3,4]} = 2 \times \text{product [3,4]} \]
\[= 2 \times (3 \times \text{product [4]}) \]
\[= 2 \times (3 \times (4 \times \text{product []})) \]
\[= 2 \times (3 \times (4 \times 1)) \]
\[= 24 \]
Using the same pattern of recursion as in product we can define the \textbf{length} function on lists.

\begin{itemize}
 \item \texttt{length} :: [a] \rightarrow \text{Int}
 \item \texttt{length \ []} = 0
 \item \texttt{length \ (_:xs)} = 1 + \text{length \ xs}
\end{itemize}

\texttt{length [1, 2, 3]}
\begin{align*}
 &= 1 + \text{length \ [2, 3]} \\
 &= 1 + (1 + \text{length \ [3]}) \\
 &= 1 + (1 + (1 + \text{length \ []})) \\
 &= 1 + (1 + (1 + 0)) \\
 &= 3
\end{align*}
Using a similar pattern of recursion we can define the `reverse` function on lists.

```haskell
reverse :: [a] → [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
```

reverse maps the empty list to the empty list, and any non-empty list to the reverse of its tail appended to its head.

reverse [1,2,3]

= reverse [2,3] ++ [1]

= (reverse [3] ++ [2]) ++ [1]

= ((reverse [] ++ [3]) ++ [2]) ++ [1]

= (([] ++ [3]) ++ [2]) ++ [1]

= [3,2,1]
Multiple Arguments

Functions with more than one argument can also be defined using recursion. For example:

- **Zipping the elements of two lists:**

  ```
  zip :: [a] → [b] → [(a,b)]
  zip [] _     = []
  zip _  []    = []
  zip (x:xs) (y:ys) = (x,y) : zip xs ys
  ```

- **Remove the first n elements from a list:**

  ```
  drop :: Int → [a] → [a]
  drop n xs | n <= 0 = xs
  drop _  []    = []
  drop n (_:xs) = drop (n-1) xs
  ```

- **Appending two lists:**

  ```
  (++) :: [a] → [a] → [a]
  []     ++ ys = ys
  (x:xs) ++ ys = x : (xs ++ ys)
  ```
Laziness Revisited

Laziness interacts with recursion in interesting ways. For example, what does the following function do?

```
numberList xs = zip [0..] xs
```

```
> numberList "abcd"
[(0,'a'),(1,'b'),(2,'c'),(3,'d')]
```
Laziness with Recursion

Recursion combined with lazy evaluation can be tricky; stack overflows may result in the following example:

```haskell
expensiveLen [] = 0
expensiveLen (_:xs) = 1 + expensiveLen xs

stillExpensiveLen ls = len 0 ls
    where len z [] = z
            len z (_:xs) = len (z+1) xs

cheapLen ls = len 0 ls
    where len z [] = z
            len z (_:xs) = let z' = z+1
                           in z' `seq` len z' xs
```

> expensiveLen [1..10000000] -- takes quite a while
> stillExpensiveLen [1..10000000] -- also takes a long time
> cheapLen [1..10000000] -- less memory and time
Quicksort

The quicksort algorithm for sorting a list of integers can be specified by the following two rules:

- The empty list is already sorted;
- Non-empty lists can be sorted by sorting the tail values ≤ the head, sorting the tail values > the head, and then appending the resulting lists on either side of the head value.
Using recursion, this specification can be translated directly into an implementation:

```haskell
qsort :: [Int] -> [Int]
qsort [] = []
qsort (x:xs) =
    qsort smaller ++ [x] ++ qsort larger
    where
        smaller = [a | a <- xs, a <= x]
        larger = [b | b <- xs, b > x]
```

Note:
- This is probably the simplest implementation of quicksort in any programming language!
For example (abbreviating qsort as q):

\[q[3,2,4,1,5] \]

\[q[2,1] \quad ++ \quad [3] \quad ++ \quad q[4,5] \]

\[q[1] \quad ++ \quad [2] \quad ++ \quad q[] \]

\[q[] \quad ++ \quad [4] \quad ++ \quad q[5] \]

[1]

[]

[]

[]

[5]
(1) Without looking at the standard prelude, define the following library functions using recursion:

- Decide if all logical values in a list are true:

 \[
 \text{and} :: \text{[Bool]} \rightarrow \text{Bool}
 \]

- Concatenate a list of lists:

 \[
 \text{concat} :: \text{[[a]]} \rightarrow \text{[a]}
 \]
- Produce a list with n identical elements:
 \[
 \text{replicate} :: \text{Int} \rightarrow a \rightarrow [a]
 \]

- Select the nth element of a list:
 \[
 (!!) :: [a] \rightarrow \text{Int} \rightarrow a
 \]

- Decide if a value is an element of a list:
 \[
 \text{elem} :: \text{Eq a} \Rightarrow a \rightarrow [a] \rightarrow \text{Bool}
 \]
Define a recursive function

merge :: [Int] → [Int] → [Int]

that merges two sorted lists of integers to give a single sorted list. For example:

> merge [2,5,6] [1,3,4]
[1,2,3,4,5,6]
Define a recursive function

```haskell
msort :: [Int] → [Int]
```

that implements merge sort, which can be specified by the following two rules:

1. Lists of length ≤ 1 are already sorted;
2. Other lists can be sorted by sorting the two halves and merging the resulting lists.
Exercises + Some answers

(1) Without looking at the standard prelude, define the following library functions using recursion:

- Decide if all logical values in a list are true:
  ```haskell
  and :: [Bool] → Bool
  
  and [] = True
  and (b:bs) = b && and bs
  ```

- Concatenate a list of lists:
  ```haskell
  concat :: [[a]] → [a]
  
  concat [] = []
  concat (xs:xss) = xs ++ concat xss
  ```
• Produce a list with \(n \) identical elements:

\[
\text{replicate} :: \text{Int} \rightarrow a \rightarrow [a]
\]

\[
\text{replicate} \; 0 \; __ = []
\]

\[
\text{replicate} \; n \; x = x : \text{replicate} \; (n-1) \; x
\]

• Select the \(n \)th element of a list:

\[
(!!) :: [a] \rightarrow \text{Int} \rightarrow a
\]

\[
(!!) \; (x:__) \; 0 = x
\]

\[
(!!) \; (_:xs) \; n = (!!) \; xs \; (n-1)
\]

• Decide if a value is an element of a list:

\[
\text{elem} :: \text{Eq} \; a \Rightarrow a \rightarrow [a] \rightarrow \text{Bool}
\]

\[
\text{elem} \; x \; [] = \text{False}
\]

\[
\text{elem} \; x \; (y:ys) \mid x==y = \text{True}
\]

\[
\text{otherwise} = \text{elem} \; x \; ys
\]
(2) Define a recursive function

```haskell
merge :: [Int] → [Int] → [Int]

merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys) = if x <= y then
    x: merge xs (y:ys)
  else
    y: merge (x:xs) ys
```

that merges two sorted lists of integers to give a single sorted list. For example:

```
> merge [2,5,6] [1,3,4]
[1,2,3,4,5,6]
```
(3) Define a recursive function

\[
\text{msort :: \{Int\} \rightarrow \{Int\}}
\]

that implements \texttt{merge sort}, which can be specified by the following two rules:

1. Lists of length ≤ 1 are already sorted;
2. Other lists can be sorted by sorting the two halves and merging the resulting lists.

\[
\text{halves xs = splitAt \(\left(\text{length xs `div` 2}\right)\) xs}
\]
\[
\text{msort \=} [[]\]
\]
\[
\text{msort \=} [x] \]
\]
\[
\text{msort xs = merge (msort ys) (msort zs)}
\]
\[
\text{ where (ys,zs) = halves xs}
\]