CSCE 314: Programming Languages

Haskell Functions

Dr. Dylan Shell
Outline

- Defining Functions
- List Comprehensions
- Recursion
Conditional Expressions

As in most programming languages, functions can be defined using conditional expressions:

```
if cond then e1 else e2
```

- e1 and e2 must be of the same type
- else branch is always present

```
abs :: Int -> Int
abs n = if n >= 0 then n else -n

max :: Int -> Int -> Int
max x y = if x <= y then y else x

take :: Int -> [a] -> [a]
take n xs = if n <= 0 then []
    else if xs == [] then []
    else (head xs) : take (n-1) (tail xs)
```
Guarded Equations

As an alternative to conditionals, functions can also be defined using guarded equations.

```
abs n | n >= 0    = n
     | otherwise = -n
```

Guarded equations can be used to make definitions involving multiple conditions easier to read:

```
signum n | n < 0     = -1
         | n == 0    = 0
         | otherwise = 1
```

Prelude:
```
otherwise = True
```

compare with …

```
signum n = if n < 0 then -1 else
           if n == 0 then 0 else 1
```
Guards and patterns can be freely mixed, the first equation whose pattern matches and guard is satisfied is chosen.

```
take :: Int -> [a] -> [a]
take n xs | n <= 0 = []
take n [] = []
take n (x:xs) = x : take (n-1) xs
```
Pattern Matching

• Many functions are defined using pattern matching on their arguments.

\[
\text{not} :: \text{Bool} \rightarrow \text{Bool} \\
\text{not False} = \text{True} \\
\text{not True} = \text{False}
\]

not maps False to True, and True to False.

• Pattern can be a constant value, or include one or more variables.
Functions can be defined in many different ways using pattern matching. For example

```
(&&) :: Bool → Bool → Bool
True && True  = True
True && False = False
False && True  = False
False && False = False
```

can be defined more compactly by

```
True && True = True
_    && _    = False
False && _ = False
True  && b = b
```

However, the following definition is more efficient, because it avoids evaluating the second argument if the first argument is False:

- The underscore symbol _ is a wildcard pattern that matches any argument value.
• Patterns are matched in order. For example, the following definition always returns False:

\[
_ \text{ && } _ = \text{False} \\
\text{True && True } = \text{True}
\]

• Patterns may not repeat variables. For example, the following definition gives an error:

\[
b \text{ && } b = b \\
_ \text{ && } _ = \text{False}
\]
List Patterns

Internally, every non-empty list is constructed by repeated use of an operator (:) called “cons” that adds an element to the start of a list.

\[[1, 2, 3, 4] \text{ Means } 1:(2:(3:(4:[]))) \]

Functions on lists can be defined using \(x:xs \) patterns.

\[
\begin{align*}
\text{head} &: [a] \to a \\
\text{head} (x:_) &= x \\
\text{tail} &: [a] \to [a] \\
\text{tail} (_:xs) &= xs
\end{align*}
\]

head and tail map any non-empty list to its first and remaining elements.

is this definition complete?
Note:

- `x:xs` patterns only match **non-empty** lists:

  ```haskell
  > head []
  Error
  ```

- `x:xs` patterns must be **parenthesised**, because application has priority over `(:)`. For example, the following definition gives an error:

  ```haskell
  head x:_ = x
  ```

- Patterns can contain arbitrarily deep structure:

  ```haskell
  f (_: (_, x):_) = x
  g [[]] = True
  ```
Totality of Functions

- **(Total) function** maps every element in the function’s domain to an element in its codomain.
- **Partial function** maps zero or more elements in the function’s domain to an element in its codomain, and can leave some elements undefined.
- Haskell functions can be partial. For example:

  ```haskell
  head (x:_) = x
  > head []
  *** Exception: Prelude.head: empty list
  
  > "10elements" !! 10
  *** Exception: Prelude.(!): index too large
  ```
Lambda Expressions

Functions can be constructed *without naming* the functions by using lambda expressions.

\[\lambda x \rightarrow x + x \]

This nameless function takes a number \(x \) and returns the result \(x + x \).

- The symbol \(\lambda \) is the Greek letter *lambda*, and is typed at the keyboard as a backslash \(\backslash \).
- In mathematics, nameless functions are usually denoted using the \(\mapsto \) symbol, as in \(x \mapsto x + x \).
- In Haskell, the use of the \(\lambda \) symbol for nameless functions comes from the *lambda calculus*, the theory of functions on which Haskell is based.
Why are Lambda's Useful?

1. Lambda expressions can be used to give a formal meaning to functions defined using currying. For example:

```
add x y = x + y
square x = x * x
```

means

```
add    = \x -> (\y -> x + y)
square = \x -> x * x
```
2. Lambda expressions can be used to avoid naming functions that are only referenced once. For example:

\[
\text{odds } n = \text{map } f \ [0..n-1] \\
\hspace{1cm} \text{where} \\
\hspace{2cm} f \ x = x \cdot 2 + 1
\]

can be simplified to

\[
\text{odds } n = \text{map } (\lambda x \to x \cdot 2 + 1) \ [0..n-1]
\]

3. Lambda expressions can be bound to a name (function argument)

\[
\text{incrementer} = \lambda x \to x + 1 \\
\text{add } (\text{incrementer } 5) \ 6
\]
Case Expressions

Pattern matching need not be tied to function definitions; they also work with case expressions. For example:

(1) \[
\text{take m ys} = \text{case (m, ys) of}
\begin{align*}
 (n, _)& \mid n \leq 0 \to [] \\
 (_, []) & \to [] \\
 (n, x:xs) & \to x : \text{take (m-1) xs}
\end{align*}
\]

(2) \[
\begin{align*}
\text{length} \ [] & = 0 \\
\text{length} \ (_{:xs}) & = 1 + \text{length} \ xs
\end{align*}
\]

using a case expression and a lambda:

\[
\text{length} = \ \lambda \text{ls} \to \text{case ls of}
\begin{align*}
 [] & \to 0 \\
 (_{:xs}) & \to 1 + \text{length} \ xs
\end{align*}
\]
Let and Where

The let and where clauses are used to create a local scope within a function. For example:

1. `reserved s = -- using let
 let keywords = words “if then else for while”
 relops = words “== != < > <= >=“
 elemInAny w [] = False
 elemInAny w (l:ls) = w `elem` l || elemInAny w ls
 in elemInAny s [keywords, relops]

2. `unzip :: [(a, b)] -> ([a], [b])
 unzip [] = ([], [])
 unzip ((a, b):rest) =
 let (as, bs) = unzip rest
 in (a:as, b:bs)`
Let vs. Where

The let ... in ... is an expression, whereas where blocks are declarations bound to the context. For example:

\[
\begin{align*}
 f \ x & \quad -- \ using \ where \ block \\
 & | \ cond1 \ x \ = \ a \\
 & | \ cond2 \ x \ = \ g \ a \\
 & | \ otherwise \ = f \ (h \ x \ a) \\
 & where \ a = w \ x
\end{align*}
\]

\[
\begin{align*}
 f \ x & \quad -- \ using \ let-in \ expression \\
 & = \ let \ a = w \ x \\
 & \quad in \ case () \ of \\
 & \quad _ | \ cond1 \ x \ -> \ a \\
 & \quad _ | \ cond2 \ x \ -> \ g \ a \\
 & \quad _ | \ otherwise \ -> \ f \ (h \ x \ a)
\end{align*}
\]
Sections

An operator written between its two arguments can be converted into a *curried* function written before its two arguments by using parentheses. For example:

```plaintext
> 1 + 2
3
> (+) 1 2
3
```

This convention also allows one of the arguments of the operator to be included in the parentheses. For example:

```plaintext
> (1+) 2
> (+2) 1
3
3
```

In general, if \oplus is an operator then functions of the form (\oplus), $(x \oplus)$ and $(\oplus y)$ are called *sections*.
Why Are Sections Useful?

Useful functions can sometimes be constructed in a simple way using sections. For example:

- successor function \((\ y\rightarrow 1+y)\)
- reciprocal function \((1/)\)
- doubling function \((*2)\)
- halving function \((/2)\)

Sometimes it is convenient or necessary to pass an operator as a parameter or when stating its type.
Exercises

(1) Consider a function `safetail` that behaves in the same way as `tail`, except that `safetail` maps the empty list to the empty list, whereas `tail` gives an error in this case. Define `safetail` using:

(a) a conditional expression;
(b) guarded equations;
(c) pattern matching.

Hint: the library function `null :: [a] → Bool` can be used to test if a list is empty.
(2) Give three possible definitions for the logical or operator (||) using pattern matching.

(3) Redefine the following version of (&&) using conditionals rather than patterns:

```
True && True = True
_    && _    = False
```

(4) Do the same for the following version:

```
True   && b = b
False && _  = False
```
Outline

- Defining Functions
- List Comprehensions
- Recursion
List Comprehensions

- A convenient syntax for defining lists
- Set comprehension - In mathematics, the comprehension notation can be used to construct new sets from old sets. E.g.,
 \[\{(x^2, y^2) | x \in \{1,2,\ldots,10\}, y \in \{1,2,\ldots,10\}, x^2 + y^2 \leq 101\}\]
- Same in Haskell: new lists from old lists

\[[(x^2, y^2) | x <- [1..10], y <- [1..10], x^2 + y^2 \leq 101]\]

generates:

\[[(1,1), (1,4), (1,9), (1,16), (1,25), (1,36), (1,49), (1,64),
 (1,81), (1,100), (4,1), (4,4), (4,9), (4,16), (4,25),
 (4,36), (4,49), (4,64), (4,81), (9,1), (9,4), (9,9),
 (9,16), (9,25), (9,36), (9,49), (9,64), (9,81), (16,1)]\]
List Comprehensions: Generators

- The expression $x \leftarrow [1..10]$ is called a generator, as it states how to generate values for x.
 - generators can be infinite, e.g.,

```
> take 3 [x | x <- [1..]]
[1,2,3]
```

- Comprehensions can have multiple generators, separated by commas. For example:

```
> [(x,y) | x <- [1,2,3], y <- [4,5]]
[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
```

- Multiple generators are like nested loops, with later generators as more deeply nested loops whose variables change value more frequently.
For example:

\[
> \left\{ (x,y) \mid y \leftarrow [4,5], \ x \leftarrow [1,2,3] \right\}
\]

\[
= \left\{ (1,4), (2,4), (3,4), (1,5), (2,5), (3,5) \right\}
\]

\(x \leftarrow [1,2,3]\) is the last generator, so the value of the x component of each pair changes most frequently.
Dependant Generators

Later generators can depend on the variables that are introduced by earlier generators.

\[(x,y) \mid x \leftarrow [1..3], y \leftarrow [x..3]\]

The list \[[1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\] of all pairs of numbers \((x,y)\) such that \(x\) and \(y\) are elements of the list \([1..3]\) and \(y \geq x\).

Using a dependant generator we can define the library function that concatenates a list of lists:

```
concat :: [[a]] -> [a]
concat xss = [x | xs <- xss, x <- xs]
```

> concat [[1,2,3],[4,5],[6]]
[1,2,3,4,5,6]
Guards

List comprehensions can use guards to restrict the values produced by earlier generators.

\[\{ x \mid x \leftarrow [1..10], \text{even } x \} \]

list all numbers x s.t. x is an element of the list [1..10] and x is even

Example: Using a guard we can define a function that maps a positive integer to its list of factors:

\[
\text{factors} \quad :: \quad \text{Int} \rightarrow [\text{Int}]
\]
\[
factors n = \{ x \mid x \leftarrow [1..n], n \mod x == 0 \}
\]

> factors 15
\[[1,3,5,15] \]
A positive integer is prime if its only factors are 1 and itself. Hence, using factors we can define a function that decides if a number is prime:

\[
\text{prime} :: \text{Int} \to \text{Bool} \\
\text{prime} \ n = \text{factors} \ n = [1, n]
\]

Using a guard we can now define a function that returns the list of all primes up to a given limit:

\[
\text{primes} :: \text{Int} \to [\text{Int}] \\
\text{primes} \ n = [x \mid x \leftarrow [2..n], \text{prime} \ x]
\]

\[
> \text{primes} \ 40 \\
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
\]
The Zip Function

A useful library function is `zip`, which maps two lists to a list of pairs of their corresponding elements.

\[
\text{zip} :: [a] \rightarrow [b] \rightarrow [(a,b)]
\]

\[
> \text{zip} \ ['a','b','c'] [1,2,3,4]
[(‘a’,1),('b',2),('c’,3)]
\]

Using `zip` we can define a function that returns the list of all positions of a value in a list:

\[
\text{positions} :: \text{Eq } a \Rightarrow a \rightarrow [a] \rightarrow [\text{Int}]
\]

\[
\text{positions } x \ xzs = [i \mid (x’,i) \leftarrow \text{zip } xzs [0..n], x == x’]
\]

\[
\text{where } n = \text{length } xzs - 1
\]

\[
> \text{positions } 0 \ [1,0,0,1,0,1,1,0]
[1,2,4,7]
\]
Using zip we can define a function that returns the list of all pairs of adjacent elements from a list:

```haskell
pairs :: [a] -> [(a,a)]
pairs xs = zip xs (tail xs)
```

Using pairs we can define a function that decides if the elements in a list are sorted:

```haskell
sorted :: Ord a => [a] -> Bool
sorted xs = and [x ≤ y | (x,y) <- pairs xs]
```

```haskell
> pairs [1,2,3,4]
[(1,2),(2,3),(3,4)]

> sorted [1,2,3,4]
True
> sorted [1,3,2,4]
False
```
A triple \((x,y,z)\) of positive integers is called **pythagorean** if \(x^2 + y^2 = z^2\). Using a list comprehension, define a function

\[
\text{pyths} :: \text{Int} \rightarrow [(\text{Int}, \text{Int}, \text{Int})]
\]

that maps an integer \(n\) to all such triples with components in \([1..n]\). For example:

\[
\text{> pyths 5} \\
[(3,4,5),(4,3,5)]
\]

\[
\text{pyths n} = [(x,y,z) | x<-[1..n], \ y<-[1..n], \ z<-[1..n], \ x^2+y^2==z^2]
\]
A positive integer is **perfect** if it equals the sum of all of its factors, excluding the number itself. Using a list comprehension, define a function

\[
\text{perfects} :: \text{Int} \rightarrow [\text{Int}]
\]

that returns the list of all perfect numbers up to a given limit. For example:

\[
> \text{perfects 500} \\
[6, 28, 496]
\]
The **scalar product** of two lists of integers xs and ys of length n is given by the sum of the products of the corresponding integers:

$$
\begin{align*}
\sum_{i=0}^{n-1} (xs_i \times ys_i)
\end{align*}
$$

Using a list comprehension, define a function that returns the scalar product of two lists.

```haskell
scalarProduct :: [Int] -> [Int] -> Int
scalarProduct xs ys =
  sum[ x*y | (x,y) <- zip xs ys ]
```