Higher Order Functions
Higher-order Functions

A function is called higher-order if it takes a function as an argument or returns a function as a result.

\[
twice :: (a \rightarrow a) \rightarrow a \rightarrow a
\]

\[
twice f x = f (f x)
\]

Note:
• Higher-order functions are very common in Haskell (and in functional programming).
• Writing higher-order functions is crucial practice for effective programming in Haskell, and for understanding others’ code.
Why Are They Useful?

- Common programming idioms can be encoded as functions within the language itself.

- Domain specific languages can be defined as collections of higher-order functions. For example, higher-order functions for processing lists.

- Algebraic properties of higher-order functions can be used to reason about programs.
The Map Function

The higher-order library function called \texttt{map} applies a function to every element of a list.

For example:

\[
\text{map } f \text{ xs} = \{ f \ x \mid x \leftarrow \text{xs} \}
\]

The map function can be defined in a particularly simple manner using a list comprehension:

\[
\text{map } f \text{ xs} = \{ f \ x \mid x \leftarrow \text{xs} \}
\]

Alternatively, it can also be defined using recursion:

\[
\text{map } f \text{ [] } = \text{[]}
\]
\[
\text{map } f \text{ (x:xs)} = f \ x : \text{map } f \text{ xs}
\]
The Filter Function
The higher-order library function \texttt{filter} selects every element from a list that satisfies a predicate.

For example:

\[
\text{filter} :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a]
\]

\[
> \text{filter even [1..10]}
\]

\[
[2,4,6,8,10]
\]

Filter can be defined using a list comprehension:

\[
\text{filter} \ p \ \text{xs} = [x \mid x \leftarrow \text{xs}, \ p \ x]
\]

Alternatively, it can also be defined using recursion:

\[
\text{filter} \ p \ [] = []
\]

\[
\text{filter} \ p \ (x:xs)
\]

\[
\mid p \ x \quad = \ x : \text{filter} \ p \ x
\]

\[
\mid \text{otherwise} \quad = \ \text{filter} \ p \ x
\]
The foldr Function

A number of functions on lists can be defined using the following simple pattern of recursion:

\[
\begin{align*}
 f \; [\;] &= v_0 \\
 f \; (x:xs) &= x \; \oplus \; f \; xs
\end{align*}
\]

f maps the empty list to some value v, and any non-empty list to some function \(\oplus \) applied to its head and f of its tail.
For example:

\[
\text{sum } [] = 0 \\
\text{sum } (x:xs) = x + \text{sum } xs
\]

\[
\text{product } [] = 1 \\
\text{product } (x:xs) = x \times \text{product } xs
\]

\[
\text{and } [] = \text{True} \\
\text{and } (x:xs) = x \&\& \text{and } xs
\]
The higher-order library function \texttt{foldr} (fold right) encapsulates this simple pattern of recursion, with the function \oplus and the value v as arguments.

For example:

\begin{align*}
 \text{sum} & = \text{foldr} \ (+) \ 0 \\
 \text{product} & = \text{foldr} \ (*) \ 1 \\
 \text{or} & = \text{foldr} \ (||) \ \text{False} \\
 \text{and} & = \text{foldr} \ (&&) \ \text{True}
\end{align*}
foldr itself can be defined using recursion:

\[
\begin{align*}
\text{foldr} & \:: \ (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b \\
\text{foldr } f \ v \ [] & = v \\
\text{foldr } f \ v \ (x:xs) & = f \ x \ (\text{foldr } f \ v \ xs)
\end{align*}
\]

However, it is best to think of foldr **non-recursively**, as simultaneously replacing each `:` in a list by a given function, and `[]` by a given value.
For example:

\[
\text{sum } [1,2,3] \\
= \text{foldr (+) 0 } [1,2,3] \\
= \text{foldr (+) 0 } (1:(2:(3[:])))) \\
= 1+(2+(3+0)) \\
= 6
\]

Replace each (:)
by (+) and [] by 0.
For example:

\[
\text{product } [1,2,3]
= \text{foldr } (*) 1 [1,2,3]
= \text{foldr } (*) 1 (1:(2:(3:[])))
= 1*(2*(3*1))
= 6
\]

Replace each (:) by (*) and [] by 1.
Other foldr Examples

Even though foldr encapsulates a simple pattern of recursion, it can be used to define many more functions than might first be expected.

Recall the length function:

\[
\begin{align*}
\text{length} & : [a] \rightarrow \text{Int} \\
\text{length} \; [] & = 0 \\
\text{length} \; (_{:}\,xs) & = 1 + \text{length} \; xs
\end{align*}
\]
For example:

\[\text{length } [1,2,3] \]
\[= \text{length } (1:(2:(3:[]))) \]
\[= 1+(1+(1+0)) \]
\[= 3 \]

Hence, we have:

\[\text{length } = \text{foldr } (_\ n \rightarrow 1+n) 0 \]

Replace each (:) by \(\lambda _ n \rightarrow 1+n \) and [] by 0
Now the reverse function:

\[
\begin{align*}
\text{reverse } [&] = [] \\
\text{reverse } (x{:}xs) &= \text{reverse } xs ++ [x]
\end{align*}
\]

For example: \(\text{reverse } [1,2,3]\)

\[
\begin{align*}
= \text{reverse } (1:(2:(3:[]))) \\
= (([] ++ [3]) ++ [2]) ++ [1] \\
= [3,2,1]
\end{align*}
\]

Hence, we have:

\[
\text{reverse } = \text{foldr } (\lambda x xs \rightarrow xs ++ [x]) []
\]

Here, the append function (++) has a particularly compact definition using foldr:

\[
(\text{++ } ys) = \text{foldr } (:) ys
\]
Why Is foldr Useful?

- Some recursive functions on lists, such as sum, are simpler to define using foldr.

- Properties of functions defined using foldr can be proved using algebraic properties of foldr.

- Advanced program optimizations can be simpler if foldr is used in place of explicit recursion.
foldr and foldl

foldr :: (a → b → b) → b → [a] → b
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

foldl :: (a → b → a) → a → [b] → a
foldl f v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

- foldr 1 : 2 : 3 : [] => (1 + (2 + (3 + 0)))
- foldl 1 : 2 : 3 : [] => (((0 + 1) + 2) + 3)
Other Library Functions

The library function \((\cdot)\) returns the **composition** of two functions as a single function.

\[
(\cdot) :: (b \to c) \to (a \to b) \to (a \to c)
\]

\[
f \cdot g = \lambda x \to f (g x)
\]

For example:

\[
\text{odd} :: \text{Int} \to \text{Bool}
\]

\[
\text{odd} = \text{not} \cdot \text{even}
\]

Exercise: Define \(\text{filterOut} \ p \ \text{xs}\) that retains elements that do not satisfy \(p\).

\[
\text{filterOut} \ p \ \text{xs} = \text{filter} \ (\text{not} \cdot p) \ \text{xs}
\]

\[
> \text{filterOut} \ \text{odd} \ [1..10]
[2,4,6,8,10]
\]
The library function `all` decides if every element of a list satisfies a given predicate.

\[
\text{all} \quad :: \quad (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow \text{Bool} \\
\text{all } p \空间 xs = \text{and } [p \space x \mid x \leftarrow xs]
\]

For example:

\[
> \text{all } \text{even } [2,4,6,8,10] \\
\text{True}
\]
Conversely the library function \textbf{any} decides if at least one element of a list satisfies a predicate.

\begin{verbatim}
any :: (a → Bool) → [a] → Bool
any p xs = or [p x | x ← xs]
\end{verbatim}

For example:

\begin{verbatim}
> any isSpace "abc def"
True
\end{verbatim}
The library function `takeWhile` selects elements from a list while a predicate holds of all the elements.

```
takeWhile :: (a → Bool) → [a] → [a]
takeWhile p []     = []
takeWhile p (x:xs)
    | p x           = x : takeWhile p xs
    | otherwise     = []
```

For example:

```
> takeWhile isAlpha "abc def"
"abc"
```
Dually, the function `dropWhile` removes elements while a predicate holds of all the elements.

```
dropWhile :: (a → Bool) → [a] → [a]
dropWhile p []     = []
dropWhile p (x:xs)
    | p x           = dropWhile p xs
    | otherwise     = x:xs
```

For example:

```
> dropWhile isSpace "   abc"
"abc"
```
filter, map and foldr

Typical use is to select certain elements, and then perform a mapping, for example,

```
sumSquaresOfPos ls
    = foldr (+) 0 (map (^2) (filter (>= 0) ls))

> sumSquaresOfPos [-4,1,3,-8,10]
110
```

In pieces:

```
keepPos = filter (>= 0)
mapSquare = map (^2)
sum = foldr (+) 0
sumSquaresOfPos ls = sum (mapSquare (keepPos ls))
```

Alternative definition:

```
sumSquaresOfPos = sum . mapSquare . keepPos
```
Exercises

(1) What are higher-order functions that return functions as results better known as?

(2) Express the comprehension $[f \ x \mid x \leftarrow xs, \ p \ x]$ using the functions map and filter.

(3) Redefine map f and filter p using foldr.