
Cooperative transport by ants and robotsC. Ronald Kube a;1 and Eri Bonabeau b;2aEdmonton Researh Centre, Synrude Canada Limited 9421-17 Avenue,Edmonton, Alberta, Canada T6N 1H4bSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USAAbstratIn several speies of ants, workers ooperate to retrieve large prey. Usually, one ant�nds a prey item, tries to move it, and, when unsuessful for some time, reruitsnestmates through diret ontat or hemial marking. When a group of ants triesto move large prey, the ants hange position and alignment until the prey an bemoved toward the nest. A roboti implementation of this phenomenon is desribed.Although the roboti system may not appear to be very eÆient, it is an interestingexample of deentralized problem-solving by a group of robots, and it provides the�rst formalized model of ooperative transport in ants.
1 IntrodutionSoial inset soieties �ants, bees, termites and wasps� are distributed sys-tems in whih olony-level behavior emerges out of interations among individ-ual insets [4℄. In addition to being a deentralized system, a olony of insetsexhibits exibility and robustness, two features that would be desirable in anarti�ial system. A reent trend in both Arti�ial Intelligene and OperationsResearh onsists of viewing the soial inset metaphor as a new paradigm fordesigning arti�ial problem-solving devies and optimization algorithms [3℄.In Autonomous Robotis, swarm-based robotis relies on the same metaphorfor the design of distributed ontrol algorithms for swarms of robots.There has been an upsurge of interest in swarm-based robotis in reent years[9℄ as it provides an interesting alternative to more lassial approahes inrobotis. Some tasks may be inherently too omplex or impossible for a sin-gle robot to perform. For example, in the ase study desribed in this paper,1 email: kube�s.ualberta.a2 email: bonabeau�santafe.eduPreprint submitted to Robotis and Autonomous Systems 30 Otober 1998



pushing a box requires the \oordinated" e�orts of at least two individuals.Speed up an result from using several robots. Designing, building, and us-ing several simple robots may be easier than designing, building and usinga single omplex robot. It may also be heaper beause of the robots' sim-pliity. A swarm of simple robots may also be more exible without the needto reprogram the robots, and more reliable and fault-tolerant beause oneor several robots may fail without a�eting task ompletion. Furthermore,theories of self-organization teah us that randomness or utuations in in-dividual behavior, far from being harmful, may in fat greatly enhane thesystem's ability to explore new behaviors and �nd new solutions. In addition,self-organization and deentralization, together with the idea that interationsamong agents need not be diret but an rather take plae through the en-vironment, point to the possibility of signi�antly reduing ommuniationsbetween robots: expliit robot-to-robot ommuniations rapidly beome a bigissue when the number of robots inreases; this issue an be to a large extenteliminated by suppressing suh ommuniations! Also, entral ontrol is usu-ally not well suited to dealing with a large number of agents, not only beauseof the need for robot-to-ontroller-and-bak ommuniations, but also beausefailure of the ontroller implies failure of the whole system.The urrent suess of olletive robotis is the result of several fators:(1) The relative failure of the Arti�ial Intelligene program, whih lassi-al robotis relied upon, has fored many omputer sientists and robotiiststo reonsider their fundamental paradigm. This paradigm shift has led tothe advent of onnetionism, and to the view that sensori-motor intelligeneis as important as reasoning and other higher-level omponents of ognition.Swarm-based robotis relies on the anti-lassial-AI idea that a group of robotsmay be able to perform tasks without expliit representations of the environ-ment and of the other robots and that planning may be replaed by reativity.(2) The remarkable progress of mobile robotis during the last deade hasallowed many researhers to experiment with mobile robots, whih have notonly beome more eÆient and apable of performing many di�erent tasks,but also heap(er).(3) The �eld of Arti�ial Life, where the onept of emergent behavior isemphasized as being essential to the understanding fundamental propertiesof the living, has done muh to propagate ideas about olletive behaviorin biologial systems, partiularly soial insets; fats and theories that wereunknown to robotiists reahed them.Using a swarm of robots has some drawbaks. For example, stagnation isone: beause of the lak of a global knowledge, a group of robots may �nditself in a deadlok, where it annot make any progress. Another problem is2



to determine how these so-alled \simple" robots should be programmed toperform user-designed tasks. The pathways to solutions are usually not pre-de�ned but emergent, and solving a problem amounts to �nding a trajetoryfor the system and its environment so that the states of both the system andthe environment onstitute the solution to the problem: although appealing,this formulation does not lend itself to easy programming. Until now, we im-pliitly assumed that all robots were idential units: the situation beomesmore ompliated when the robots have di�erent harateristis, respond todi�erent stimuli, or respond di�erently to the same stimuli, and so forth; ifthe body of theory that robotiists an use for homogeneous groups of robotsis limited, there is virtually no theoretial guideline for the emergent designand ontrol of heterogeneous swarms.Many potential appliations of swarm-based robotis require miniaturization.Very small robots, miro- and nano-robots, whih will by onstrution haveseverely limited sensing and omputation, may need to operate in very largegroups or swarms to a�et the maroworld [34℄. Approahes diretly inspiredor derived from swarm intelligene may be the only way to ontrol and managesuh groups of small robots. As the reader will perhaps be disappointed bythe simpliity of the tasks performed by state-of-the-art swarm-based robotisystems suh as the one presented in this paper, let us remind her that itis in the perspetive of miniaturization that swarm-based robotis beomesmeaningful. In view of the great many potential appliations of swarm-basedrobotis, it seems urgent to work at the fundamental level of what algorithmsshould be put into these robots: understanding the nature of oordination ingroups of simple agents is a �rst step toward implementing useful multirobotsystems.In swarm-based robotis, ooperative transport|partiularly ooperative box-pushing|has been an important benhmark for testing new types of robotiarhiteture. One of the swarm-based roboti implementations of ooperativetransport is so losely inspired by ooperative prey retrieval in soial insetsthat it is a genuine model of the phenomenon, thereby providing a uniqueexample of a truly bidiretional exhange between biology and robotis. Antsof various speies are apable of olletively retrieving large prey that are im-possible for a single ant to retrieve. Usually, a single ant �nds a prey itemand tries to move it alone; when suessful, the ant moves the item bak tothe nest. When unsuessful, the ant reruits nestmates through diret on-tat or trail laying. If a group of ants is still unable to move the prey itemfor a ertain time, speialized workers with large mandibles may be reruitedin some speies to ut the prey into smaller piees. Although this senarioseems to be fairly well understood in the speies where it has been studied,the mehanisms underlying ooperative transport|that is, when and how agroup of ants move a large prey item to the nest|remain unlear. No formaldesription of the biologial phenomenon has been developed, and, surpris-3



ingly, robotiists went further than biologists in trying to model ooperativetransport: perhaps the only onvining model so far is one that has been in-trodued and studied by robotiists [31℄ and, although this model was notaimed at desribing the behavior of real ants, it is biologially plausible. Thispaper �rst desribes empirial observations of ooperative transport in ants,and then desribes the work of Kube and Zhang [27{29,31℄.2 Cooperative Prey Retrieval in Ants 3A small prey or food item is easily arried by a single ant. But how an ants\ooperate" to arry a large item? Cooperative prey (or large food item) re-trieval and transport has been reported in several speies of ants [46,42,50℄:weaver ants Oeophylla smaragdina [25℄ and Oeophylla longinoda [23,54℄,army ants Eiton burhelli [18℄ Afrian driver ants Dorylus [20,36℄, and otherspeies suh as Pheidole rassinoda [45℄,Myrmia rubra [47℄, Formia lugubris[47℄, Lasius neoniger [49℄, the desert ants Aphaenogaster (ex-Novomessor)okerelli and Aphaenogaster albisetosus [24,32℄, Pheidologeton diversus [36℄,Pheidole pallidula [13,14℄, Formia polytena [10,11,35,51℄, Formia shau-fussi [42,41,50℄ and the ponerine ants Etatomma ruidum [39℄ and possiblyParaponera lavata [6℄. This ooperative behavior an be quite impressive. Forexample, Mo�ett [36℄ reports that a group of about 100 ants Pheidologetondiversus was able to transport a 10-m earthworm weighing 1.92 g (more than5000 times as muh as a single 0.3-mg to 0.4-mg minor worker) at 0.41 m/son level ground. By omparison, ants engaged in solitary transport of fooditems on the same trail were arrying burdens weighing at most 5 times theirbody weight at about 1 m/s: this means that ants engaged in the ooperativetransport of the earthworm were holding at least 10 times more weight thandid solitary transporters, with only a modest loss in veloity [36℄.We believe that the phenomenon of ooperative transport is muh more om-mon in ants than these few studies suggest: to the best of our knowledge, thesestudies are the only ones that report detailed observations of ooperative preytransport. This phenomenon involves several di�erent aspets:(1) Is there an advantage to group transport as opposed to solitary transport?Is worker behavior in group transport di�erent than in solitary transport?(2) When and how does an ant know that it annot arry an item alonebeause it is either too large or too heavy?(3) How are nestmates reruited when help is needed?(4) How do several ants ooperate and oordinate their ations to atuallytransport the item?3 Portions of setion 2 have been modi�ed from [3℄.4



(5) How do ants ensure that there is the right number of individuals involvedin arrying the item?(6) How does a group of transporting ants handle deadloks and, more gener-ally, situations where the item to be transported is stuk, either beauseof antagonisti fores or beause of the presene of an obstale or hetero-geneities in the susbtrate?All these questions, that have been more or less satisfatorily dealt with inthe above-mentioned studies, are of enormous interest in view of implementinga deentralized ooperative roboti system to transport objets the loationsand sizes of whih are unknown.2.1 Solitary Transport Versus Group TransportIn Pheidologeton diversus, single worker ants usually arry burdens (grasp-ing them between their mandibles, lifting them from the ground and holdingthem ahead as they walk forward) rather than drag them [36℄. By ontrast,in ooperative transport, one or both forelegs are plaed on the burden to aidin lifting it, mandibles are open and usually lay against the burden withoutgrasping it. The movement patterns of group-transporting ants orrespondingto their positions around the perimeter of a burden with referene to the di-retion of transport are also di�erent than those of ants engaged in solitarytransport: workers at the forward margin walk bakward, pulling the burden,while those along the trailing margin walk forward, apparently pushing theburden; ants along the sides of the burden shu�e their legs sideways and slanttheir bodies in the diretion of transport [36℄.By ontrast, Sudd [45,47℄ observes that individual Pheidole rassinoda, Myr-mia rubra, and Myrmia lugubris ants appear to exhibit the same behavioralpatterns in solitary and group transport: in group transport, all three speiesused the same method as when they work alone, inluding realignment andrepositioning. This, however, does not exlude ooperative behavior: grouptransport in these speies is partiularly interesting beause the same individ-ual behavior is funtional either in isolation or in group, and may even lead toinreasing returns (up to a maximum group size: see setion 2.2) despite thelak of diret response of individuals to the presene of their nestmates.In general, whether ants behave similarly or di�erently when engaged in soli-tary and group transport, group transport is more eÆient than solitary trans-port for large prey. Ants an dismantle a large food item into small enoughpiees to be arried by individual ant workers. Mo�ett [36℄ observed that alarge piee of ereal, whih would have required 498 solitary Pheidologetondiversus transporters if broken down into small enough piees, ould be trans-5



ported olletively by only 14 ants. More generally, he observed that the weightarried by ant inreases with group size: the total weight arried by a groupof N workers inreases as W / N2:044, whih means that the weight arriedby eah ant inreases on average as N1:044. Franks [18℄ made similar observa-tions on Eiton burhelli : let Wi be the dry weight of transported items andWa the total dry weight of the group of transporting ants, the relationshipbetween both is Wi / W 1:377a , whih, assuming that Wa is proportional to N ,implies that the dry weight arried by ant inreases as N0:377. Franks [18℄ alsoobserved that items were always retrieved at a standard speed, relatively inde-pendent of group size: he hypothesized that the inreased eÆieny of grouptransport with group size results from the group's ability to overome therotational fores neessary to balane a food item. Along the same lines, wealready mentioned Mo�ett's [36℄ experiment in whih he showed that group-transporting ants ould arry more than 10 times more weight than did soli-tary transporters at a speed only divided by 2. He found that the veloityof transport dereases as a funtion of the number of Pheidologeton diversusarriers, but dereases signi�antly only for large group sizes (>12 arriers).The transport eÆieny per ant, measured by the produt of burden weightby transport veloity divided by the number of arriers, inreases with groupsize up to a maximum for groups of 8 to 10 ants, and then delines [36℄.As emphasized by Traniello and Robson [50℄, transport eÆieny may not bethe only and primary reason for group transport in ants. In Aphaenogasterokerelli group retrieval of prey dereases interferene ompetition with sym-patri speies [24,32℄, and in Lasius neoniger the rapid formation of a ooper-ative retrieval group is ruial to foraging suess [49℄.2.2 From Solitary to Group TransportAll reports of how the deision is made to swith from solitary to group trans-port desribe variants of the same phenomenon. A single ant �rst tries to arrythe item, and then, if the item resists motion, to drag it (although draggingis rare in Pheidologeton diversus). Resistane to transport seems to determinewhether the item should be arried or dragged [13,14,45,47℄. The ant spendsa few seonds testing the resistane of the item to dragging before realigningthe orientation of its body without releasing the item: modifying the dire-tion of the applied fore may be suÆient to atually move the item. In aserealignment is not suÆient, the ant releases the item and �nds another posi-tion to grasp the item. If several repositioning attempts are unsuessful, theant eventually reruits nestmates. Reruitment per se is examined in the nextsetion. Sudd [47℄ reports that the time spent attempting to move the item de-reases with the item's weight: for example, an ant may spend up to 4 minutesfor items less than 100 mg, but only up to 1 minute for items more than 3006



mg. Detrain and Deneubourg [13,14℄ have shown that in Pheidole pallidula,it is indeed resistane to tration, and not diretly prey size, that triggersreruitment of nestmates, inluding majors, to ut the prey: they studied re-ruitment through individual trail laying for prey of di�erent sizes (fruit iesversus okroahes), or of the same size but with di�erent levels of retrievabil-ity (free fruit ies versus fruit ies overed by a net). A slow reruitment tofree fruit ies was observed, in onnetion to weak individual trail laying; inontrast, strong reruitment and intense individual trail laying were observedwhen large prey or small but irretrievable prey were o�ered. It is therefore theability or inability of an individual or a group that governs reruitment.2.3 Reruitment of NestmatesH�olldobler et al. [23℄ studied reruitment in the ontext of ooperative preyretrieval in two Aphaenogaster (ex-Novomessor) speies: Aphaenogaster al-bisetosus and Aphaenogaster okerelli. They show that reruitment for ol-letive transport falls within two ategories: short-range reruitment (SRR)and long-range reruitment (LRR). In SRR, a sout releases a poison glandseretion in the air immediately after disovering a large prey item; nestmatesalready in the viinity are attrated from up to 2 m. If SRR does not attratenough nestmates, a sout lays a hemial trail with a poison gland seretionfrom the prey to the nest: nestmates are stimulated by the pheromone alone(no diret stimulation neessary) to leave the nest and follow the trail towardthe prey.H�olldobler [25℄ reports short-range, and more rarely long-range (retal gland-based), reruitment in Oeophylla smaragdina in the ontext of prey retrieval,during whih seretions from the terminal sternal gland and alarm pheromonesfrom the mandibular glands interat. This short-term reruitment attratsnestmates loated in the viinity, whih quikly onverge toward the intruderor prey item, whih is retrieved into the nest when dead. In a series of experi-ments with 20 freshly killed okroahes plaed at randomly seleted loationsin a olony's territory, the prey were disovered within several minutes (aver-age: 8.05 min.); ants in the viinity were attrated by short-range reruitmentsignals; 5 to 8 ants grasped the prey item and held it on the spot for severalminutes (average: 11.6 min.) before jointly retrieving it to the nest. This lastphase involved 5.3 ants on average. In Oeophylla longinoda, even when theprey were pinned to the ground and the ants were unable to retrieve it, long-range reruitment was not used [23℄. By ontrast, long-range reruitment wasobserved in Oeophylla smaragdina when the okroahes were pinned to thesubstrate and several workers had attempted without suess to remove theprey: reruiting ants moved bak to the nearest leaf nest (although there wasonly one queen, as is usual in this speies, the nest of the onsidered olony7



was omposed of 19 separate leaf nests, whih is also ommon in the speies)where they reruit nestmates whih soon moved out of the leaf nest toward theprey. From 25 to 59 ould be reruited, whereas between 9 and 19 ants wereinvolved in atually retrieving the prey to the nest one the prey were eventu-ally retrieved. This indiates that the ants do not estimate the size or weightof the prey but rather adapt their group sizes to the diÆulty enounteredin �rst moving the prey. H�olldobler [25℄ reports that the reruited ants weregathering around the prey, seeking to get aess, and sometimes grasped nest-mates that were already working at the prey, thereby forming a pulling hain,a ommon behavior in weaver ants. The prey were usually �rst transported tothe leaf nest from whih helpers had been reruited.2.4 Coordination in Colletive TransportCoordination in olletive transport seems to our through the item beingtransported: a movement of one ant engaged in group transport is likely tomodify the stimuli pereived by the other group members, possibly produing,in turn, orientational or positional hanges in these ants. This is an exampleof stigmergy [22℄, the oordination of ativities through indiret interations.Here, stigmergy is a promising step toward a roboti implementation, beauseit suggests that a group of robots an ooperate in group transport withoutdiret ommuniation among robots; moreover, robots do not have to hangetheir behaviors depending on whether or not other robots are engaged in thetask of arrying (or dragging, or pulling, or pushing) the item. The oordina-tion mehanism used by ants in ooperative transport is not well understood,and has never really been modeled. The swarm of robots desribed in setion3 is just suh a model, whih shows that the biology of soial insets andswarm-based robotis an both bene�t from eah other.2.5 Number of Ants Engaged in Group TransportApparently, the number of ants engaged in transporting an item is an inreas-ing funtion of the item's weight, whih indiates that group size is adapted tothe item's harateristis. For example, Mo�et [36℄ reports how the number ofPheidologeton diversus arriers varies with burden weight. Inverting the rela-tionship desribed in setion 2.1, we obtain N / W 0:489. The �t to the data isremarkable, suggesting that the adaptation of group size is aurate. Using thesame notations as in setion 2.1, Franks [18℄ �nds thatWa / W 0:726i for Eitonburhelli. However, as mentioned in the previous setion, H�olldobler's [25℄ ob-servations suggest that the ants adapt group size to the diÆulty enounteredin �rst moving prey: deisions rely on how diÆult it is to arry the prey, and8



not simply on weight. A prey item that resists (either atively or passively)stimulates the ant(s) to reruit other ants. Suess in arrying a prey item inone diretion is followed by another attempt in the same diretion. Finally, re-ruitment eases as soon as a group of ants an arry the prey in a well-de�neddiretion: in that way, group size is adapted to prey size.In addition to the size of the ooperative transport group, it seems that theomposition of the group is not random: for example, in army ants (Eitonburhelli), groups have a spei� distribution of submajors that omprise a spe-ialized transport aste [18℄. Of ourse the situation is less lear in monomor-phi speies, that is, speies in whih there is a single physial worker aste,but some individuals may be speialized in group transport.2.6 Deadlok and Stagnation ReoverySometimes, the item's motion an no longer progress either beause foresare applied by ants in opposite diretions and anel one another, or beausethe group has enountered an obstale or any signi�ant heterogeneity on thesubstrate. We have already mentioned that a single ant, who �rst disovers afood item, tries to transport it alone: the ant �rst tries to arry it, then todrag it; an unsuessful ant tries another diretion and/or another position andthen, if still unsuessful, gives up the prey temporarily to reruit nestmates.The same phenomenon ours when ants are engaged in group transport: if,for any reason, the item is stuk, ants exhibit realigning and repositioningbehaviors [45,47℄. The frequeny of spatial rearrangements, whih may resultfrom the ants' response to the reative fores ommuniated through the itembeing transported [47℄, inreases with time, and so does the rate of transport.As is the ase for solitary transporters, realignments tend to our before, andare muh frequent than, repositionings: only when realignment is not suÆientdo ants try to �nd other slots around the prey.Along the same lines, Mo�ett [36℄ reports that ants (Pheidologeton diversus)gather around food items at the site of their disovery, gnawing on them andpulling them; during the �rst ten minutes or so, the item is moved aboutslowly in shifting diretions, before ants \sort out" their ations and atualtransport an begin. During these ten minutes, a lot of spatial rearrangementstake plae.Personal observations of weaver ants Oeophylla longinoda on�rm the exis-tene of suh spatial rearrangements in this speies too.Van Damme and Deneubourg [51℄ studied ooperative transport of Tenebriomolitor 's larvae (a worm) in the ant Formia polytena, and found that aftera period of unsuessful attempts to transport the larvae individually or in9



Fig. 1. Distane over whih a larva of Tenebrio molitor has been transported byFormia polytena ants as a funtion of time. Eight experiments are shown. AfterVan Damme and Deneubourg [51℄, reprinted by permission.group, transport suddenly beomes suessful, one possible reason being thatthe fores applied by the various individuals engaged in ooperative trans-port beome aligned. Figure 1 shows the distane over whih a larva has beentransported as a funtion of the time elapsed sine the larva was disovered.Distane is positive when progress has been made toward the nest and neg-ative otherwise. It an be learly seen that a \phase transition" ours atsome point (whih, however, annot be predited: it varies from experimentto experiment), when group transport suddenly beomes suessful. After thattransition, transport proeeds smoothly until the larva reahes the nest.3 Cooperative Transport by RobotsFrom the previous setion, we understand better, although not perfetly, howants ooperate in olletive prey transport. In this setion we introdue o-operative transport by robots, more preisely ooperative box-pushing. Box-pushing requires a ooperative e�ort from at least two robots to move a boxalong some trajetory [8,37,15,27,38,44,33℄. Of the multi-robot tasks inludingforaging and formation marhing, box-pushing has generally used a ombina-tion of entralized planning and onit resolution with expliit ommunia-tion between robots to oordinate their ations.In the following setions we desribe a series of work, by Kube and Zhang[27{29,31℄ and Kube [30℄, onsistent in its ant-based approah to the problemof ooperative transport by a group of robots. The initial task under studywas undireted box-pushing, in whih a group of robots found a box and10



pushed it in a diretion that was dependent upon the initial on�guration.The task evolved into direted box-pushing, with the robots pushing the boxfrom an initial position towards a �xed goal position. Finally, the transporttask, a variant of the direted box-pushing task in whih multiple goals weresequened, is presented in whih the robots to push the box from one loationto the next.The initial simulation model was implemented in a group of �ve physialrobots [27℄. Then, inspired by Sudd's observations of group prey retrieval [45,47℄,stagnation reovery behaviors were added [29℄ and an approah to task mod-eling [31℄. Currently the system onsists of a group of homogeneous robotsapable of transporting large boxes between arbitrary goal positions.3.1 From Soial Insets to RobotsSoial insets are nature's proof-by-example of a deentralized multiagent sys-tem whose ontrol is ahieved through loally sensed information, as Setion2 learly suggests. In earlier work, we began with a simple simulation of aswarm of robots designed to loate and push a box and then implemented asubset of the behaviors in �ve physial robots [27,28℄.A robot's box-pushing ontroller was modeled as three sensors onneted totwo atuators through a set of �ve behaviors. A goal sensor was used to loatethe box while a robot sensor provided information on the losest robot andan obstale sensor warned of objets in lose proximity. Left and right wheelmotors used for steering were the two atuators. A modi�ed �xed prioritysubsumption arhiteture [7℄ for behavior arbitration was used with the �vebehaviors, listed in asending order:(1) Find is the default motion behavior moving the robot forward along agradual ar.(2) Follow auses the robot to follow the losest robot within view.(3) Slow swithes the two speed wheel motors from medium to low.(4) Goal moves the robot towards the box.(5) Avoid moves the robot away from an obstale.A simple taxis-based stimulus-response mehanism maps sensors to atuators.Inspired by Braitenberg's Vehiles [5℄ and observations of soial insets, sensorsprovide input to behaviors whih map primitive disrete motion ommands toleft and right wheel motors.In a single simulation timestep, eah behavior takes its onneted sensors andalulates an appropriate motor response with the highest priority behaviortaking e�et. The result is a ontroller with the Follow and Goal behaviors11
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Fig. 2. A Follow and Goal behavior produe oordinated motion towards a box.While the Avoid behaviour auses robot \A" to disperse around the box until anempty spot is found.produing oordinated motion toward the box and theAvoid behavior ausingrobots to disperse around its perimeter (see Figure 2).Keeping robots together using a Follow behavior had an advantage, in thenondireted box-pushing task, of distributing the robots around the same halfof the box. Behavior preferenes allowed a behavior to narrow an attahedsensor's �eld-of-view. For example, the initial setting of the robot-sensor al-lowed the robot to see in a forward faing hemisphere. This setting resultedin robots breaking from a swarm when they sensed a loser robot who mayhappen to be moving in the opposite diretion. By narrowing the view of thesensor while in the following state passing robots are ignored. In this way abehavior ould adapt its sensings to suit the immediate purpose.Based on the simulation results �ve physial robots were built with ontrollersontaining two behaviors: Avoid andGoal. The behaviors were implementedas ombinational logi whih mapped a left and right obstale sensor to leftand right wheel motors respetively, ausing the robot to move away from ob-stales. Left and right box sensors were mapped to right and left wheel motorsausing the robot to turn towards a brightly lit box. The resulting ontrollersallowed the robots to loate the box, onverge and push in a number of di-retions depending on the number of robots per side. The box was weightedsuh that at least two robots were required to move the box as it was pushedtoward the edge of the test area.The oordination demonstrated was possible by using a ommon goal andbehaving using a simple \noninterferene priniple" [40℄. The result demon-strated a simple ooperation without diret ommuniation, although indiretommuniation ours through stigmergy (see [21℄).Further simulation results showed that the suess rate for nondireted box-12



pushing 4 inreases as a funtion of the number of robots up to a point thatappeared dependent on the size of the box. However, the system would stag-nate or deadlok when an equal number of pushing robots surrounded the boxresulting in an even distribution of box fores. To solve the stagnation problemwe turned our attention bak to ooperative prey retrieval by ants.4 Stagnation Reovery and Mass E�etA detailed study of ooperative prey retrieval in ants by Sudd unovered sev-eral strategies used to ombat stagnation [45,47℄. If during transport the fooditem beomes stuk ants will realign their body orientation without releasingtheir grasp, as was desribed in more detail in Setion 2. This has the e�etof hanging the diretion of the pulling or pushing fores and was often suf-�ient to resume motion. If after several minutes realignment fails, the antwill release their prey and reposition themselves along the perimeter. Repo-sitioning seems to result in larger ummulative hanges in the fores atingon the transport item and was often suessful in resuming motion. Couldrealignment and repositioning behaviors be used for stagnation reovery inbox-pushing robots?Our simulation experiments ompared box-pushing ontrollers whih inludedstagnation reovery behaviors [29℄. The results demonstrated that the appli-ation of random pushing motions by either realigning the pushing angle orrepositioning the pushing fore was an e�etive tehnique against stagnation(see Figures 3 and 4). The results also showed that the task suess rate andeÆieny improved as a funtion of the number of robots. However, eÆienymeasured as the number of simulation timesteps, improved to a point thatappeared dependent on the number of robots able to �t along the box.The realignment behavior produed a small random hange in pushing anglewhile the reposition behavior aused the robot to hange the point of ontatwith the box. The box would translate or rotate if the resultant fore or torqueexeeded a threshold. Stagnation was deteted by a robot if it was in ontatwith the box after an elapsed period without also deteting forward motion.Ordering of the realignment and reposition behaviors was aomplished withtimeout thresholds. For example, realignment beame ative at t +X wheret is the time the robot ontated the box. Reposition beame ative at t+4Xwith t reset eah time the robot moved.4 Where suess was de�ned as pushing the box 200 units in 2000 simulatedtimesteps. 13
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5 A Task Model for Direted Box-PushingThe direted box-pushing task required a new approah to task modeling. Inundireted box-pushing the state of the robot's ontroller was determined byseleting the highest priority behavior from a small selet set. As a goal dire-tion to push the box was added, it beame apparent that aomplishing thetask would involve a series of phases or steps often exeuted in a repetitivemanner. Suess would rely on the redundany of mass e�et. In eah step,some of the previous behaviors would not be useful and ould ause inter-ferene. For example, if a robot was orretly positioned for pushing the boxtowards the goal, then obstale avoidane was not needed and if aidentlytriggered would ause the progression to halt.A termites nest, with its well de�ned mushroom shape, is onstruted througha series of building steps. Eah onstrution phase is thought to be governed bya building program with step transition spei�ed as stimulus ues. In fat, thisommuniation through the environment is the basis of Grass�e's StigmergyTheory [21℄. Thus desribing a task as a series of steps with the transitionbetween the steps spei�ed as loally sensed ues formed the basis of ourapproah to task modelling [31℄.In this setion we briey desribe the direted box-pushing model and presentnew results of experiments using four di�erent box types transported betweentwo goal positions.5.1 Coherent BehaviorIn order to get oherent behavior from a group a robots eah robot has anidential task ontroller whih is omposed of subtask ontrollers designed toaomplish eah step of the task. The ontrollers are �nite state mahines(Q-mahines) with state transition spei�ed using binary sensing prediates,whih we all pereptual ues.The transport task is de�ned by three states: Find-box, Move-to-box andPush-to-goal. Eah state is implemented as a subtask ontroller designed toaomplish a single funtion. The two pereptual ues used to determine thestate of the transport system are ?Box-detet (BD) and ?Box-ontat(BC). The states are shown in Table 1.Eah substask ontroller is a �nite state mahine with states represented asprimitive atuation (PA) behaviors. PA behaviors use motion primitives tomove the robot. Eah of the three subtask ontrollers are spei�ed using statesas shown in Tables 2 - 4. 16



Transport ControllerPereptual Cue (Input) Task State (Output)BD BC Subtask Controller0 X Find-box1 0 Move-to-box1 1 Push-to-goalTable 1Task exeution state is determined by two pereptual ues: ?Box-detet (BD)and ?Box-ontat (BC).FIND-BOX Subtask ControllerPereptual Cue (Input) Behavior State (Output)?TOUCH ?CONTACT- ?AVOID- PA Behavior0 0 0 random-walk0 0 1 avoid0 1 X ontat1 X X bak-offTable 2The FIND-BOX Q-mahine is the subtask ontroller used to lo ate the box tobe manipulated. Input is from the listed pereptual ues whih de�ne the outputbehaviour state spei�ed as a primitive atuation (PA) behaviour. The \X" in theinput table indiates a don't are term. The pereptual ues orresponding to thedashed labels are: ?ontat-detet; ?avoid-detet.5.2 Pereptual Cues for Box-PushingTransporting a box from an unknown initial position towards a �nal goal des-tination was modeled using three types of pereptual ues. Obstale avoidaneues were used to detet an obstale and trigger avoidane behaviors. Box de-tetion ues were used to loate and trak a moving box, as well as, to ontrolstate transitions among the task step ontrollers. And a goal detetion uewas used to indiate proper robot orientation, with respet to the goal, fora pushing behavior. The ues are designed with a given set of motor ationsin mind. The design and implementation of eah pereptual ue involve thefollowing steps:(1) Sensor Plaement Given a sensor type, determine the position, orien-tation and number of sensors to be used in the sensor system.(2) Data Colletion For a given environment, ollet data from the sensorthat represents the ondition under whih the task is performed.17



MOVE-TO-BOX Subtask ControllerPereptual Cue (Input) Behavior State (Output)?TOUCH ?CONTACT- ?AVOID- ?BOX- PA Behavior0 0 0 1 seek-box0 0 1 X avoid0 1 X X ontat1 X X X bak-offTable 3The MOVE-TO-BOX Q-mahine is the subtask ontroller that moves the robottowards any side of the brightly lit box to be manipulated. Input is from the listedpereptual ues whih de�ne the output behavior state spei�ed as a primitiveatuation (PA) behavior. The \X" in the input table indiates a don't are term.The pereptual ues orresponding to the dashed labels are: ?ontat-detet;?avoid-detet; and ?box-detet.PUSH-TO-GOAL Subtask ControllerPereptual Cue (Input) Behavior State (Output)?SEE-GOAL PA Behavior0 reposition1 push-boxTable 4The PUSH-TO-GOAL Q-mahine is the subtask ontroller that either pushes thebox towards a goal destination or repositions the robot on another position of thebox to be manipulated. Input from the ?see-goal pereptual ue, whih determinespushing angles, an vary the aeptable pushing angles.(3) Data Analysis Determine what features of the data may be used tomeet the pereptual ue's spei�ation.(4) Algorithm Design Design an algorithm to extrat the desired feature.(5) AlgorithmVeri�ation Speify the tests to verify that the ue performsas designed.5.2.1 Obstale Detetion CuesThe purpose of the obstale detetion ues are to provide obstale distaneinformation to the robot. Three disrete thresholds are used orresponding tothe distanes of: less than 25 m, less than 12.5 m, and in physial ontatwith the robot. Ative infrared emitter/detetor pairs are used to provide non-ontat obstale information for the left and right front of the robot. Contatobstale detetion is determined using a single bit ontat swith. The obstale18



detetion ues are de�ned as: 5?obstale Return right and left true ags indiating the orresponding ob-stale sensor has exeeded the input threshold.?touh Return a true ag if the front ontat swith is pressed.5.2.2 Box Detetion CuesThree pereptual ues are used for box detetion:?box-diretion Return right and left true ags indiating the orrespondingbox sensor has exeeded the input threshold.?box-detet Return a true ag if either left or right box sensors exeed agiven input threshold.?box-ontat Return a true ag if ?touh is true and either right or leftbox sensors exeed a given input threshold.Box detetion is simpli�ed by using a bright light plaed at the enter ofthe box. The box detetion ue asks the question: Can the robot see thebox-light? The answer depends on the robot's distane from the box andthe orientation of its two forward pointing sensors with respet to the box.An adjustable threshold varies the range at whih the box-light is detetableand is dynamially determined as a funtion of ambient light. Reognizingphysial ontat with the box is a ombination of two di�erent types of sensing,touh and light intensity. This ombination of stimulus is unique in the task'senvironment simplifying box reognition.5.2.3 Goal Detetion CueThe goal detetion ue asks the question: Can the robot see the goal? Theanswer is a funtion of the robot's orientation with respet to the goal indi-ator, whih in this instane is a spotlight plaed near the eiling. The goaldetetion ue is de�ned as:?see-goal Return a true ag if a signal peak greater than the input thresholdis deteted within the user de�ned �eld-of-view.The �nal design onsists of a narrow �eld-of-view sensor whih is swept bya motor in an upward pointing ar. If a signal peak ours, aused by thespotlight, within an adjustable window the goal is deteted. The box detetionsensors whih fae horizontally are shielded from light soures above the robot,5 Pereptual ues will be identi�ed by their leading question mark.19



while the goal detetion sensors fae upward and therefore the goal-light doesnot interfere with the box-light.At any given moment a robot is ontrolled by a single PA behavior. Thesebehaviors issue disrete ations whih a�ets the robot's orientation. As inthe simulated robots, orientation is based on a taxis mehanism.5.3 Taxis-based Disrete AtionJander de�nes inset orientation as \the apaity and ativity of ontrolingloation and attitude in spae and time with the help of external and internalreferenes i.e. stimuli." [26℄. In insets the behavioral at of orientation is on-trolled either externally, and results in a diretional orientation using a taxismehanism, or internally under kinestheti ontrol. Taxis is de�ned by Web-ster's as a reex translational or orientational movement by a freely motileorganism in relation to a soure of stimulation [52℄. Inspired by Braitenberg'sVehiles [5℄ robot ations are based on taxis orientation or kinestheti orien-tation as �xed motion patterns. The resulting ation is used to reate motorbehaviors used in a reative ontroller. The only required knowledge about thepereption side of the robot is that it orresponds to a left and right divisionof the mobility system used to produe the ations. In other words, the inputto the ation model is a stimulus as measured by a sensor and does not dependon either the stimuli's modality or magnitude.In box-pushing motion is restrited to translation and rotation in two dimen-sions. All robot motor ations, therefore, result in hanges in position andorientation with respet to a given oordinate frame. To failitate a quik re-sponse to hanges in sensor data, a reative ontrol system is used for motorations.A mobility base was built and used di�erential steering as its means for ahiev-ing hanges in translation and rotation. Disrete motion primitives were de-veloped to be used as the underlying mehanism for all ations taken by thesystem. Pereptual proesses are designed independently, but rely on the taxismodel and its di�erential steering method for mobility.Primitive atuation behaviors are lassi�ed into three groups: positive taxisor goal driven, whih provide a hange in orientation or translation towards astimulus; negative taxis or avoidane driven, whih e�et a hange in orien-tation or translation away from a stimulus; and kinesthetially driven, whihexeute a �xed ation sequene in response to stagnating or deadlok ondi-tions.A wheel motor is ontrolled using two parameters: speed and diretion of ro-20



Positive and Negative Taxis MappingsStimulus Negative Taxis Positive TaxisL R avoid ontat seek-box0 0 null null null0 1 left-turn left-rotate right-turn1 0 right-turn right-rotate left-turn1 1 right-turn right-rotate forwardTable 5The positive and negative taxis behavior mappings. Behaviors that ause diretionalhanges based on external stimuli expet a stimulus from the left and right sides ofthe robot similar to stimulus sensing found in insets. The \null" output means thebehavior doesn't produe a motion ommand.tation. Speed is proportional to the applied input voltage and a �xed speedsetting is used in all motion ommands exept while applying a pushing fore.Continuous motion is aomplished by issuing a series of disrete motion om-mands, eah of whih moves the robot a small inremental amount. The om-mands have the general form: begin(ation), wait �t, end(ation).A positive taxis or goal driven behavior moves the robot towards a given exter-nal stimulus. Input to the behavior takes the form of a left and right dividedstimulus pair whih may orrespond to left and right sensors on the robot.The input variables to the behavior are boolean and indiate the presene orabsene of the stimulus within a given range and �eld-of-view. Output fromthe behavior is a motion ommand seleted from a set of four ommands rep-resenting the possible number of input ombinations. In the ase of a behaviorwith a single input variable, 0 is mapped to the null motion ommand and 1is mapped to the forward ommand. For the box-pushing task two goal drivenbehaviours are:� seek-box - moves the robot towards a box.� push-box - pushes the box by inreasing motor voltage.In the same manner negative taxis or avoidane driven behavior repels a robotfrom a given stimulus. For the box-pushing task the two avoidane drivenbehaviors are:� avoid - turns the robot away from obstales.� ontat - rotates the robot away from obstales.The motor behaviours whih ause hanges in orientation are summarized inTable 5. 21



Kinestheti orientation is used to produe motion in the absene of externalstimuli and for stagnation reovery movements. In the ase of both positive andnegative taxis, orientation of the robot is under ontrol of external stimuli. Atany time the motor behavior relies on an external stimulus to deide the orretresponse in orientation. However, many behavioral ats in both insets androbots lak the external stimulus needed to guide the orientation mehanism.Rather a orret behavioral response might simply be a �xed pattern of motorativity stored in memory and released under suitable onditions. For example,a spider an return to a given loation by \remembering and kinesthetiallyontrolling its movements," a skill also found in bees and ants [26℄.In the absene of stimuli, a �xed pattern of motor ativity an serve as astrategy while foraging for food or searhing for a goal. For instane, whenan ant leaves its nest to searh for food it leaves in a straight line until itenounters either food or an odor trail whih it then follows using a positiveodor-taxis mehanism [53℄. In box-pushing, a searh strategy alled random-walk is used whih keeps the robot moving in a forward diretion by issuing asequene of motion primitives Continuous motion by the robot in the abseneof any external stimulus is thus aomplished.Reovery from deadlok or stagnation is the seond use of kinestheti orienta-tion. During the exeution of a task by robots using reative ontrol strategies,the absene of a plan an result in a ondition in whih the exeution of thetask gets stuk or is said to stagnate. For example, a dead end is reahedby a robot trying to navigate to a given goal as in Arkin's box anyon prob-lem [12℄. The problem is similar to �nding a loal maximum, enounteredby hill-limbing algorithms, when the goal is to �nd the global maximum. Innondireted box-pushing the net fore applied by the robots may equal zero ifthe robots are evenly distributed around the perimeter of the box. In suh aase, a robot might attempt inde�nitely to push the box unsuessfully. Kines-theti orientation, in the form of �xed ation sequenes and triggered by eitherthe presene or absene of a ontrolling stimulus, is one solution suitable tothe stagnating onditions in the box-pushing task.6 Group Size in Cooperative TransportStigmergy, a term oined by Frenh biologist P. Grass�e, whih means to initework by the e�et of previous work [21℄ is a priniple �nding its way from the�eld of soial insets to olletive robotis [2,48℄. With their limited repertoireof behavioral ats soial insets display an amazing ompetene in buildingnest strutures. >From the simple nests produed by the blind bulldozing ofants [19℄ to the termite homes that stand over a meter tall [46℄ all of whihresult from ommon task oordination that does not appear to depend on22



interation between the agents, but rather on the objet they at upon. Inthis setion, the results are presented for the integrated models of the previoussetions. This global ation is demonstrated in the olletive transport task.Global ation is the e�et produed when a set of idential mobile robotsexeute the ommon task of pushing an objet towards an arbitrarily spei-�ed goal position. Coordination is ahieved without resort to diret inter-robotommuniation or robot di�erentiation. Instead, ontext sensitive subtask on-trollers deompose the box transport task into three phases. The phases de-sribe what is to be ahieved, in terms of the externally observable eventsdesribed by box position, without speifying how the task is to be aom-plished by way of a unique path.6.1 Experimental SystemThe experimental setup used to gather the data presented in the sequel on-sisted of a robot environment, in whih various boxes were plaed along withtwo spotlights used to indiate �nal goal positions, and a set of idential mo-bile robots omplete with sensors and Q-mahine task ontrollers. In total over100 box-pushing trials were run using from one to 11 robots, four di�erent boxtypes and in three di�erent venues. The �nal set of experiments were reordedon over four hours of video tape with an individual trial lasting between 30seonds and �ve minutes. Desribed briey is both the robot environment andhardware used.6.1.1 Robot EnvironmentThe ideal test environment would be a large open spae without walls leavingthe robots free to push the box along any desired path. Sine this environmentwas not available a smaller and more restritive area de�ned by walls was used.A permanent spae large enough in whih to ondut experiments was oftendiÆult to �nd, resulting in the reation of a portable testing environmentonsisting of: 11 robots, two spotlights on stands for goal position indiators,the box to be manipulated, and a video amera to reord the results. How-ever, the majority of the experiments were onduted in the area depited inFigure 5 whih beame available towards the end of this study.6.2 Robot HardwareThe system is omposed of a set of homogeneous two-wheeled robots, eahweighing 1.3 kilograms and measuring approximately 18 entimeters in height23
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Fig. 5. In eah trial the box was plaed at initial position three meters from the goalline and the robots were plaed at one of the indiated starting positions labelledP1 - P5. After Kube and Zhang [31℄. Reprinted by permission Kluwer AademiPublishers.and diameter as shown in Figure 6. A battery allows for 45 minutes of op-eration with a 10 minute reharge time. A Motorola 68HC11 miroontrollerwith 8K of RAM and programmed in Forth is used to map sensor output toone of nine motion primitives. A minimum number of sensors (6) was soughtin implementing the pereptual ues. Additional sensors would allow a moreomnidiretional �eld-of-view in the ase of obstale and box sensing and betterpushing orientation in the ase of box ontat sensing, but the objetive wasto determine what ould be aomplished with the minimal number of sensingbits. The hardware proved to be robust with few breakdowns.6.2.1 Direted Box-PushingInreasing the number of robots from two to six did not a�et the suess-ful outome of the transport experiments. This is an analogous result to thesimulation results (shown in Figure 10) in whih suessful task ompletionremained high despite an inrease in the number of robots. However, no laimis being made that task ompletion time is not a�eted, sine ompletion timeswere found to vary as the number of robots inreased and were dependent onavailable resoures. In eah of the 58 suessful trials reorded the box waspushed from an initial starting position, loated approximately in the enter ofa �ve by four meter area, towards the goal area indiated in Figure 5 and end-ing in quadrant I at a distane of at least 2.5 meters. The robots were startedin eah trial from positions P1 to P5in quadrants II-IV shown in Figure 5.Suessful trials would run between 32 and 214 seonds and were exeuted inthree phases. 24



Fig. 6. Eah of the robots are equipped with two forward pointing infrared obstalesensors, one touh sensor, two CdS box-traking photoells, and a destination sensor,all mounted on a di�erentially steered base.The �rst phase began when the robots were powered on, the box-light was o�and the goal-light was on. System initialization onsists of taking ambient lightreadings used to set the box-detetion threshold. The robots began exeutingFIND-BOX and quikly dispersed themselves in the area. Shortly thereafter,the box-light was turned on and those robots that were faing the box andsuÆiently lose would move towards and make ontat with a boxside usingthe MOVE-TO-BOX ontroller. Depending on an individual robot's posi-tion, with respet to the box when box-detetion ourred, the distributionof robots around the box would vary and mark the beginning of the seondphase.In the seond phase, some of the robots inorretly positioned for pushing,as determined by the PUSH-TO-GOAL ontroller, began moving ounter-lokwise around the box perimeter searhing for an open spot on a orretside. This behavior is the result of several yles through the transport Q-mahine onsisting of in turn FIND-BOX, MOVE-TO-BOX and PUSH-TO-GOAL subtask ontrollers and an be explained as follows. One ontatis made with a boxside the ?see-goal pereptual ue determines that therobot is on the wrong side for pushing. The PUSH-TO-GOAL ontrollerthen exeutes the reposition behavior whih moves the robot away fromthe box in a ounterlokwise diretion. If the box is within view, determinedby the ?box-detet ue, MOVE-TO-BOX brings the robot into ontatwith a new position on the box providing it is unoupied. The obstale avoid-ane behaviors keep a robot away from oupied positions on a boxside. If thebox is not within view then FIND-BOX exeutes and searhes for the box.25



The PUSH-TO-GOAL ontroller evaluates the new position and the ylerepeats.The third and �nal phase is haraterized by the box moving towards the goalposition. One a net fore suÆient to move the box ours the box beginsto translate and possibly rotate. During the box movement phase a robotontinuously determines if it remains on the orret side for pushing usingthe ?see-goal ue. A robot loated at the edge of the pushing swarm maysuddenly lose site of the goal and begin repositioning. The resulting drop inpushing fore may be suÆient to halt the box movement until another robotjoins the group e�ort. The dynamis of both the box and robots is suh thatthe path taken by the box towards the goal is seldom straight. Rather, boxmovement an be said to onverge towards the goal sine its trajetory is thenet result of several fore vetors applied by individual robots. A typial boxpath might begin at position P0 proeed towards P6 and then move to P7 asillustrated in Figure 5.6.2.2 Pushing Di�erent Box TypesTo evaluate the ontroller's sensitivity to objet geometry, 38 suessful tri-als were performed using six robots and four di�erent box types. The initialbox, box a, tested was 42 entimeters square and large enough for two 18entimeter robots on a side. A seond 84 entimeter square box, box , wasbuilt by extending the initial box with a seond frame. This inreased the boxdimensions, but used the same base on whih the box slid along the oor. Athird 84 entimeter box, box b, was built on a new base whih inreased thenumber of points in ontat with the oor and therefore its sliding frition.The fourth box, box d, was round with a diameter of 84 entimeters and theresults of the 39 trials an be summarized as follows:� box a. A total of 10 trials were suessful in pushing box a from the initialposition to the goal positions in quadrant I (see Figure 9). The robots startedfrom positions P1�5. In general as the number of robots inreased the tasktook longer to omplete as the robot interferene was high sine the limitedbox side spae reated ompetition among the robots.� box b. A total of eight trials were suessful in transporting box b fromits initial position using 6 robots starting from position P4 and ending atpositions P5�7.� box . A total of seven suessful trials were reorded in whih box  wasmoved to the goal area by six robots starting from positions P2�4. This boxhad the highest failure rate among the four boxes used and was due to arobot getting aught on the frame.� box d. A total of 14 trials using a round box, box d, and four to sixrobots were suessful in moving the box between two goal positions. The26



round box was the last box built and experiened the most suess of thefour types tested. The lak of orners provided the robots with a uniformontat surfae to push against unlike the square boxes whih had sharppoints at its orners.6.2.3 Changes in Goal PositionThe initial suess of the direted box-pushing task led to the following ex-tension whih inreased the task diÆulty. Pitured in Figure 7 are two goalpositions labelled PA and PB. The robots begin from position P4 and a goal-light at position PA is illuminated ausing the robots to push the box towardsPA. One reahed the goal-light at PA is turned o� and the goal-light at PBis swithed on. The robots reposition around the box and begin pushing to-wards the goal at PB. Figure 8 is a sequene of three images taken from avideo segment in whih two goals were used. A total of eight suessful trialsusing three di�erent goal positions were reorded using a single box.
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Fig. 8. Shown are �ve robots pushing a round box from its initial position �rsttowards a goal-light in the right of the piture and then towards a goal-light on theleft of the piture. The mpeg video from whih this sequene was taken is availableat http://www.s.ualberta.a/�kube/ist approah to robotis \things hange" is axiomati. CoeÆients of fritionhange beause the oor gets dusty, fore is redued beause batteries rundown, motors wear reduing repeatability, wheels slip in response to hangesin load and the list goes on. However, in general there still seems to be a trendin the data making it worth presenting.6.2.4 System SizeThe mean exeution time for moving the smaller 42 entimeter square boxfrom its initial position to the goal positions were ompared for two to sixrobots as shown in Figure 9. Starting positions for the robots were varied andinluded P1;3�5 with the �nal end position of the box reorded for timing tobe P5;7. Indiated in eah plot are the number of trials used to ompute themean. The large variane in runtimes was due to robot start positions P1;5whih ould result in long repositioning phases 6 . In general, exeution timesinreased as a funtion of the number of robots due to the inrease in robotinterferene ompeting for the limited box spae. A muh larger number oftrials is needed for any statistial onlusions.6.2.5 Convex Objet GeometryOur previous simulation study had shown that in a box-pushing task perfor-mane, as measured by ompletion time or suess rate, 7 ould be improvedif stagnation reovery behaviors were added to the ontroller to avoid deadlokfrom ourring when the robots applied an equal distribution of fores to thebox [29℄. What was also noted was the sudden drop in performane as the6 Both the maximums indiated in the ase of three and �ve robots ourred fromP5.7 Suess was de�ned to be the movement of the box by 200 units in under 2000simulation timesteps. 28
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a oordinated group e�ort is possible without use of diret ommuniation orrobot di�erentiation. Rather a form of indiret ommuniation takes plaethrough the environment by way of the objet being manipulated. For di-reted box-pushing, the ontrol strategy was shown to be insensitive to systemsize, some onvex objet geometries and hanging goal positions. The resultsof experiments with physial robots presented here, adds support to Arkin'ssimulation studies whih showed that ooperation in some tasks are possiblewithout diret ommuniation [1℄.The data presented here also agrees in ertain aspets with other studies inwhih stigmergy is used as the task oordinating mehanism. Stigmergy as pro-posed by Grass�e is a model used to explain the regulation of building behaviorin termites [21℄. Stigmergy theory holds that transitions between a sequeneof onstrution steps is regulated by the e�et of previous steps. In more gen-eral terms, the theory has been used to explain and desribe the proess bywhih task ativity an be regulated using only loal pereption and indiretommuniation through the environment as applied to algorithms for oordi-nating distributed building behaviour [48℄ and foraging tasks by multi-robotsystems [2℄. In the box-pushing task the results support the use of indiretommuniation through the environment as proposed by stigmergy theory.However, Downing and Jeanne found that stigmergy theory does not explainthe use of additional ues, not dependent on previous steps, in regulating taskexeution in nest onstrution by paper wasps [16℄. For olletive robotis thismeans that pereptual ues an also be formed from stimuli other than thatwhih are immediately available from the task itself. For example, in diretedbox-pushing the box-detetion ues are adaptive to the ambient light level ofthe environment by speifying box-detetion as a multiple of the ambient lightlevel.Coherent behavior from a olletive system of robots must also aount fortask resoure management. Coordination improves by minimizing antagonistiations that an result from onits over limited resoures. In box-pushing an-tagonisti fores are mitigated by inreasing the available boxside spae whileenforing a noninterferene behavior. The data on transporting small boxesversus large boxes by the same number of robots on�rms the observationsmade during task exeution. For box-pushing, this result implies that groupsize is important for a �xed resoure size in a given task and agrees with theresult obtained by Bekers et al. [2℄ for a foraging task in whih one to �verobots were used to gather 81 objets randomly distributed in their environ-ment then plaing them into one large pile. Their study showed that group sizewas a ritial fator in determining task eÆieny and that inreasing the num-ber of robots used without inreasing the available task resoures inreasedtask exeution time due to the inrease in inter-robot interferene. In general,inreasing task resoures minimizes inter-robot interferene. Thus, reduingrobot interferene inreases group oordination and onsequently leads to a32



more eÆient oherene as demonstrated by the dereasing exeution times.The oherent behavior displayed for the transport task an also be attributedto the ommon goal shared by the individual robots along with an idential setof interation rules. This is the same e�et noted by Seeley while onsideringthe olletive deision making in honey bees [43℄. As an explanation for howa swarm of honey bees ould reah the same deision on the pro�tability ofseveral food soures, Seeley hypothesized that eah bee's nervous system wasalibrated in a similar manner. Sine all members of the olony share the samerules for adjusting response thresholds, the bees an operate independentlyyet generate a olletive response to various netar soures. Thus ommongoals and ommon rules of interation allow a deentralized deision makingproess to produe a oherent global response. By way of the soial insets,nature is showing us how to build deentralized and distributed systems thatare autonomous and apable of aomplishing tasks through the interationof many simple and highly redundant agents. From their loal pereption tothe mass e�et that results in a global ation these biologial systems serveto eluidate the mehanisms thought to be at the heart of self-organizingbehavior.In return, the roboti system desribed in this paper tells us a lot aboutooperative transport in ants. We have seen that the model makes preditionsabout the kind of stagnation reovery mehanism (if any) to be expeteddepending on eologial onditions. At a more fundamental level, beausethe model is able to reprodue many of the olletive features of ooperativetransport in ants and beause it is based on plausible assumptions, it suggeststhat these assumptions may be suÆient to explain the behavior observed inants. Many of the preditions of the model an now be tested empirially.Of ourse it an be argued that the atual roboti implementation was notneeded: simulations were just as good. This is only partially true beause theroboti implementation shows that the assumptions the model is based on anprodue the expeted behavior in the real world, that is, with real onstraints,a result that is far from obvious as many fators (frition, heterogeneity, et.)play a role in ooperative transport.Aknowledgments. E. B.'s work is supported through the Interval ResearhFellowship.Referenes[1℄ Arkin, R.C. Cooperation without Communiation: Multiagent Shema-BasedRobot Navigation. Journal of Roboti Systems 9 (1992): 351{364.[2℄ Bekers, R. and O.E. Holland and J.L. Deneubourg. >From Loal Ations to33
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