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Abstract

Co-evolution (i.e. the evolution of two a more awmpeting populations with coupled fitnesg
has swvera features that may potentially enhance the power of adaptation of artificia
evolution. In particular, as discussed by Dawkins and Krebs [3], competing populations may
redprocally drive one another to increasing levels of complexity by producing an evolutionary
“arms rac€’. In this paper we will investigate the role of co-evolution in the mntext of
evolutionary robdics. In particular, we will try to understand in what conditions co-evolution
can lead to “armsraces’. Moreover, we will show that in some @ses artificial co-evolution has
a higher adaptive power than simple evolution. Findly, by analyzing the dynamics of co-
evolved populations, we will show that in some drcumstances well adapted individuals would
be better advised to adopt simple but easily modifiable strategies siited for the airrent
competitor strategies rather than incorporate complex and genera strategies that may be
eff edive against awide range of opposing counter-strategies.

1. Introduction

Co-evolution (i.e. the evolution of two or more mwmpeting populations with coupled
fitness) has sveral fedaures that may potentially enhance the adaptation power of
artificial evolution’.

First, the co-evolution of competing populations may produce increasingly complex
evolving challenges. As discussed by Dawkins and Krebs [3] competing populations
may reciprocally drive one another to increasing levels of complexity by producing an
evolutionary “arms race”. Consider for example the well-studied case of two co-
evolving populations of predators and prey [16]: the success of predators implies a
failure of the prey and conversely, when prey evolve to overcome the predators they
also create anew challenge for them. Similarly, when the predators overcome the new
prey by adapting to them, they creae a new challenge for the prey. Clealy the
continuation of this processmay produce an ever-greder level of complexity (although
this does not necessarily happen, as we will seebelow). As Rosin and Belew [20] point
out, it is like producing a pedagodcal series of challenges that gradualy increase the
complexity of the crresponding solutions. For an example of how a progressive
increase in the cmplexity of the training sample may allow a neural network to learn a
complex task that cannot otherwise be learned see[4].

! By adaptive power we mean the ability to solve complex tasks. In the mntext of predator and prey, this
means the ability to catch avery efficient prey or to escape avery efficient predator.



This nice property overcomes the problem that if we ask evolution to find a solution
to a complex task we have ahigh probability of failure while if we ak evolution to find
a solution first to a simple task and then for progressively more complex cases, we ae
more likely to succeal. Consider the predators and prey case ajain. At the beginning of
the evolutionary process the predator should be able to catch its prey which have avery
simple behavior and are therefore eay to catch; likewise, prey should be &le to escgpe
simple predators. However, later on, both populations and their evolving challenges will
become progressively more and more complex. Therefore, even if the seledion criterion
remains the same, the alaptation task may beamme progressively more complex.

Seoondly, because the performance of the individual in a population depends also
on the individual strategies of the other population which vary during the evolutionary
process the aility for which individuals are seleded is more general® (i.e., it has to
cope with a variety of different cases) than in the cae of an evolutionary processin
which co-evolution is not involved. The generality of the seledion criterion is a very
important property becaise the more general the aiterion, the larger the number of
ways of satisfying it (at least partially) and the greaer the probability that better and
better solutions will be found by the evolutionary process

Let us again consider the predator and prey case. If we ask the evolutionary process
to cach one individual prey we may easily fail. In fact, if the prey is very efficient, the
probability that an individual with a randomly generated genotype may be ale to cach
it isvery low. As a mnsequence, all individuals will be scored with the same null value
and the seledive process cannot operate. On the mntrary, if we ak the evolutionary
processto find a predator able to catch a variety of different prey, it is much more
probable that it will find an individual in the initial generations able to catch at least one
of them and then select better and better individuals until one predator able to catch the
original individual prey is sleded.

Finally, competing co-evolutionary systems are @pealing becaise the ever-
changing fitness landscape, due to changes in the @-evolving species is potentially
useful in preventing stagnation in local minima. From this point of view, co-evolution
may have @nseguences similar to evolving a single population in an ever-changing
environment. Indeed the environment changes continuously given the fad that the -
evolving species is part of the environment of each evolving population.

Unfortunately a continuous increase in complexity is not guaranteed. In fad, co-
evolving populations may cycle between alternative class of strategies that, although
they do not produce alvantages in the long run, may produce atemporary improvement
over the @-evolving population. Imagine, for example, that in a particular moment
population A adopts the strategy A; which gives population A an advantage over
population B which adopts strategy B;. Imagine now that there is a strategy B,
(genotypically similar to B;) that gives population B an advantage over srategy A;.
Population B will easily find and adopt strategy B,. Imagine now that there is a strategy
A, (genotypically similar to A;) that provides an adaptive advantage over strategy B..
Population A will easily find and adopt strategy A,. Finally imagine that previously
discovered strategy B, provides an advantage over srategy A,. Population B will come
bad to strategy B;. At this point also population A will come badk to dtrategy A

2Wewill usetheterm ‘general strategy’ or ‘general solution’ to indicate seleded individuals able to cope
with dfferent tasks. In the mntext of predator and prey we will indicate with the term ‘general’ the
strategy adopted by a predator which is able to catch a large number of prey adopting different, not
necessarily complex, strategies.



(because, as explained above, it is effedive against strategy B;) and the cycle of the
same strategies will be repeaed over and over again (Figure 1).
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Figure 1. The same dtrategies (A; and A, in population A) and (B, and B, in population B) may be
seleded over and over again throughout generations asis shown in theright hand side of the figure if the
interaction between them lodks like what is represented on the left side of the Figure. In this case the
repeated cycle correspondsto 4 different combinations of strategies.

Notice how the cycling may involve two or more different grategies for eat
population but also two or more different groups of strategies.

Parker [18] was the first to hypothesize that parent-offspring and intersexual ‘arms
races may end upin cycles. Dawkins and Krebs [3] noted how this hypothesis can be
applied to asymmetric amsraces in general.

Of course this type of phenomenon may cancel out al the previously described
advantages because, if co-evolution quickly falls into a o/cling phase, the number of
different solutions discovered might be quite limited. In fad, there is no need to
discover progressively more complex strategies. It is aufficient to re-discover previously
seleded strategies that can be aopted with a limited number of changes. Moreover, it
should be noted that cycling is not the only possible caise which may prevent the
emergenceof ‘armsraces’.

In this paper we will investigate the role of co-evolution in the @ntext of
evolutionary robotics. In particular, we will try to understand in which conditions, if
any, co-evolution can leal to “arms races’ in which two populations reciprocally drive
one another to increasing levels of complexity.

After introducing our experimental framework in section 2.1 and 22 we will
describe the result of a first basic experiment in sedion 2.3. As we will see, the
innovations produced in this first experiments may easily be lost becaise the
evolutionary process quickly falls into a o/cling phase in which the same type of
solutions are adopted over and over by the two co-evolving populations. In sedion 2.4
we will show how the tendency to cycle between the same type of strategies may be
reduced by preserving all previously discovered strategies and by using all of them to
test the individual of the aurrent population (we will refer to this technique a ‘Hall of
Fame’' co-evolution). We will also point out that this technique, which is biologically
implausible, has its own drawbadks. In sedion 2.5 in fad, we will see how ‘Hall of
Fame’' co-evolution does not necessary produce better performance than simple @-
evolution. On the @ntrary, in the cae of the experiment described in this sdion,
simple @-evolution tend to outperform ‘Hall of Fame’ co-evolution. In sedion 2.5 we
will also see how ‘arms races’ can emerge and indeed produce better and better



solutions. In sedion 2.6 we will see how increasing the environmental richness may
deaease the probabil ity to fall in cycling phases. Finally, in section 2.7 we will seehow
co-evolution can solve problems that evolution alone annot. In other words, we will
show how in some circumstances co-evolution has an higher adaptive power than
evolution of asingle population.

2. Co-evolving predator and prey robots

Several reseachers have investigated co-evolution in the mntext of predators and
prey in simulation [11, 12, 1, 2]. More recaitly, we have tried to investigate this
framework first by using realistic simulations based on the Khepera robot [7, 8] and
subsequently the real robots [9]. Up to now, we replicaed on the real robots the
experiments which will be described in sedion 2.3. By comparing the results obtained
in simulation with those obtained with the real robots in this case we did not observe
any significant difference in term of performance ad co-evolutionary dynamic.
Although, not all the strategies observed in simulation were also observed in the
experiments performed in the real environment. In this case, in fad, the presence of
much larger noise filtered out brittle solutions[9].

In this sedion, we will first describe our experimental framework and the results
obtained in a simple cae. Then, we will describe other experimental conditions more
suitable to the emergence of ‘armsraces’ between the two competing populations.

2.1 The experimental framework

As often happens, predators and prey belong to different species with different
sensory and motor charaderistics. Thus, we employed two Khepera robots, one of
which (the Predator) was equipped with a vision module while the other (the Prey) had
a maximum available speed set to twice that of the predator. The prey has a black
protuberance, which can be detected by the predator everywhere in the environment
(seeFigure 2). The two species could evolve in a square aena 47 x 47 cm in size with
high white walls 9 that predator could always sethe prey (within the visual angle) as a
bladk spot on a white badkground.

Figure 2. Prey and predator (left to right).



Both individuals were provided with eight infrared proximity sensors (six on the
front side and two on the badk) which had a maximum detedion range of 3-4 cm in our
environment. For the predator we considered the K213 module of Khepera which is an
additional turret that can be plugged in diredly on top of the basic platform. It consists
of a 1D-array of 64 photoreceptors which provide alinear image mmposed of 64 pxels
of 256 gay-levels each, subtending a view-angle of 36°. However the K213 module
also allows detection of the position in the image @rresponding to the pixel with
minimal intensity. We used this facility by dividing the visual field into five sectors of
about 7° ead corresponding to five simulated photoreceptors (seeFigure 3). If the pixel
with minimal intensity lay inside the first sedor, then the first simulated photoreceptor
would become adive; if the pixel lay inside the seoond sedor, then the second
photoreceptor would become adive, etc. From the motor point of view, we set the
maximum wheel spead in each diredion to 80mnvs for the predator and 160mnvs for

the prey.
1 SYNAPSE
A

ooy

47 cm

47 om

QooOo 00000 Q00

VISION ﬁnm

Figure 3. Left and center: details of simulation of vision, of neural network architedure, and of genetic
encoding. The prey differs from the predator in that it does not have 5 input units for vision. Eight bits
code ech synapse in the network. Right: Initial starting position for prey (left, empty disk with small
opening corresponding to frontal diredion) and predator (right, back disk with line corresponding to
frontal diredion) in the aena. For each competition, the initial orientation israndom.

In line with some of our previous work [6], the robot controller was a simple
perceptron comprising two sigmoid units with reaurrent connedion at the output layer.
The adivation of each output unit was used to updie the speed value of the
corresponding wheel every 100ms. In the case of the predator, ead output unit receved
connections from five photoreceptors and from eight infrared proximity sensors. In the
case of the prey, each output unit received input only from 8 infrared proximity sensors,
but its adivation value was multiplied by 2 before setting the wheel speed.

In order to ke things as simple as possible and given the small size of the
parameter set, we used dred genetic encoding [22]: ead parameter (including reaurrent
connections and threshold values of output units) was encoded using 8 hits. For the
same reason, the achitedure was kept fixed, and only synaptic strengths and output
units threshold values were evolved. Therefore, the genotype of the predator was 8 x (30
synapses + 2 thresholds) bits long while that of prey was 8 x (20 synapses + 2
thresholds) bits long. It should be noted that the type of architedure we seleded may
constraint the type of solutions which will be obtained duing the evolutionary process



In principle, it would be better to evolve both the achitecdure and the weights at the
same time. However, how to encode the achitedure of the network into the genotype is
sill an open and complex reseach isae in itself. Moreover, even more @mplex
genotype-to-phenotype mappings (which would allow the evolution of the achitedure
too) might still constrain the evolutionary processin certain, albeit different ways.

Two populations of 100 individuals each were -evolved for 100 generations.
Eacd individual was tested against the best competitors of the previous generations (a
similar procedure was used in [21, 2]). In order to improve -evolutionary stability,
each individual was tested againgt the best competitors of the ten previous generations
(on this point see also below). At generation 0, competitors were randomly chosen
within the same generation, whereas in the other 9 initial generations they were
randomly chosen from the pool of avail able best individuals of previous generations.

For ead competition, the prey and the predator were dways positioned on a
horizontal line in the middle of the ewvironment at a distance @rresponding to half the
environment width, but always at a new random orientation. The @mpetition ended
either when the predator touched the prey or after 500 motor updates (corresponding to
50 seomnds a maximum on the physica robot). The fitness function for ead
competition was simply 1 for the predator and O for the prey if the predator was able to
cach the prey and, conversely O for the predator and 1 for the prey if the latter was able
to escgpe the predator. Individuals were ranked after fitness performance in descending
order and the best 20 were alowed to reproduce by generating 5 offspring each.
Random mutation (bit substitution) was applied to ead bit with a onstant of
probability pm=0.02,

For eadh set of experiments we ran 10 replications garting with different randomly
assigned genotypes.

In this paper we will refer to data obtained in simulation. A simulator developed
and extensively tested on Khepera by some of uswas used [15)].

2.2 Measuring adaptive progressin co-evolving populations

In competitive @-evolution the reproduction probability of an organism with
certain traits can be modified by the competitors, that is, changes in one species aff ect
the reproductive value of specific trait combinations in the other species, It might thus
happen that progressachieved by one lineage is reduced or eliminated by the cmpeting
species. This phenomenon, which is referred to as the “Red Queen Effect” [19], makes
it hard to monitor progressby taking measures of the fitnessthroughout generations. In
fad, becaise fitnesses are defined relative to a co-evolving set of traits in the other
individuals, the fitness landscapes for the @-evolving individuals vary. As a
consequence, for instance, periods of stasis in the fitness value of the two populations
may correspond to a period of tightly-coupled co-evolution.

In order to avoid this problem, different measure techniques have been proposed.
Cliff and Miller [1] have devised away of monitoring fitness performance by testing the

% The parameters used in the smulations described in this paper are mostly the same as in the simulation
described in [7]. However, in these experiments we used a simpler fitnessformula (abinary value insteal
of a continuous value proportional to the time necessary for the predator to catch the prey). Moreover, to
keg the number of parameters as small as possble, we did not use crosover. In the previous
experiments, in fact, we did not notice ay significant difference in experiments conducted with different
crosover rates.



performance of the best individual in each generation againgt all the best competing
ancestors which they call CIAO data (Current Individual vs. Ancestral Opponents).

A variant of this measure technique has been proposed by us and has been called
Master Tournament [7]. It consists in testing the performance of the best individual of
eah generation against ead best competitor of all generations. This latter technique
may be used to select the best solutions from an optimization point of view (see[7]).
Both techniques may be used to measure @-evolutionary progress(i.e. the discovery of
more general and eff edive solutions).

2.3 Evolution of predator and prey robots. asmple ase.

The results obtained by running a set of experiments with the parameter described
in sedion 2.1 are shown bkelow. Figure 4 represents the results of the Master
Tournament, i.e the performance of the best individual of each generation tested against
all best competitors from that replicaion. The top graph represents the average result of
10 simulations. The bottom graph represents the result of the best run.

100

751

. ,/\/\/\/WWW\/\/‘ —
W\IJ\MMP\/\“/\/M =

fitness

25+

0 25 50 75 100
generations

100

751

50 |
— Prey

25+

fitness

0 25 50 75 100

generations

Figure 4. Performance of the best individuals of each generation tested against all the best opponents of
each generation (Master Tournament). Performance may range from 0 to 100 because each individual is
tested once against each best competitor of 100 generations. The top graph shows the average result of 10
different replications. The batom graph shows the result in the best replicaion (i.e. the simulation in
which predators and prey attain their best performance). Data were smoathed using rolling average over
threedata points.



These results show that, a least in this case, phases in which both predators and
prey produce increasingly better results are sometimes followed by sudden drops in
performance (see the bottom graph of Figure 4). As a mnsequence, if we look a the
average result of different replicaions in which increase axd drop phases occur in
different generations, we observe that performance does not incresse & all throughout
generations (seethe top graph of Figure 4). In other words the dficacy and generality of
the different seleded strategies does not increase evolutionarily. In fad, individuals of
later generations do not necessarily score well against competitors of much ealier
generations (seeFigure 5, right side). Similar cases have been described in [2, 21].

The ‘arms races’ hypothesis would be verified if, by measuring the performance of
each best individual against ead best competitor, a picture goproximating that shown
on the left side of Figure 5 could be obtained. In this ideal situation, the bottom-left part
of the square, which corresponds to the caes in which predators belong to more recent
generations than the prey, is blad (i.e. the predator wins). Conversely, the top right part
of the square, which corresponds to the caes in which the prey belong to more recent
generations than the predators, is white (i.e. the prey wins). Unfortunately, what acually
happens in atypicd run is quite different (seeright part of Figure 5). The distribution of
bladk and white spots does not differ significantly in the two sub-parts of the square.

generations prey generations prey

generations predator
generations predator

Figure 5. Performance of the best individuals of each generation tested against all the best opponents of
each generation. The black dots represent individual tournaments in which the predators win while the
white dots represent tournaments in which the prey wins. The picture on the left represents an ideal
situation in which predators are able to catch all prey of previous generations and the prey are able to
escape all predators of previous generations. The picture on the right represents the result for the best
simulation (the same shown in Figure 4).

This does not imply that the m-evolutionary process is unable to find interesting
solutions as we will show below (see also [7]). This merely means that effedive
strategies may be lost instead of being retained and refined. Such good drategies, in
fad, are often replacel by other srategies that, although providing an advantage over
the aurrent opponents, are much lessgeneral and effective in the long run. In particular,
this type of processmay lead to the g/cling processdescribed in sedion 1 in which the
same strategies are lost and re-discovered over and over again.

The cycling between the same class of strategies is adually what happens in these
experiments. If we take a look at the qualitative aspeds of the behavior of the best
individuals of succesdve generations we seethat in all replicaions, evolving predators
discover and rediscover two different classes of strategies: (A;) tradk the prey and try to
cach it by approadiing it; (Ay) trad the prey while remaining more or lessin the same
area ad attadking the prey only on very special occasions (when the prey is in a
particular position relative to the predator). Similarly the prey cycles between two



classes of strategies. (B;) stay still or hidden close to awall waiting for the predator and
eventually trying to escgpe when the IR sensors detect the predator (notice that
predators usually keep themselves away from walls to avoid crashes); (B2) move fast in
the environment, avoiding both the predator and the wall s.

Now, as in Figure 1, the strategy A; is generally effective ayainst B,, in fad the
predator will reach the prey if the prey does not move too much and has a good chance
of succealing given that the prey can only deted predators approaching from certain
diredions because of the uneven distributions of the infrared sensors around the body.
Strategy B, is effedive ayainst strategy A; becaise the prey is faster than the predator
and so, if the predator tries to approach a moving fast prey, it has little chance of
caching it. Strategy A; is effective ajainst strategy B, becaise, if the prey moves fast in
the environment, the predator may be ale to catch it easily by waiting for the prey itself
to come close. Finally, strategy B; is very effective ajainst strategy A,. In fad if the
predator does not approach the prey and the prey stays gill, the prey will never risk
being caught. This type of relation between different strategies produces a o/cling
processsimilar to that described in Figure 1.
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Figure 6. Positi on of the best predator and prey of successve generationsin the phenotype space (top and
bottom graph, respedively). The Y and X axes represent the average spedd (i.e. computed as the absolute
value of the dgebraic sum of the two wheds) and the average distance (i.e. the distance in mm between



two competing individuals), respedively. Individuals of different generations are shown with dfferent
labels but, for graphic reasons, individuals of each 25 successve generations are shown with the same
label. Average spead and distance have been computed by testing the best individual of each generation
against the best competitor of each generation.

The cycling processis driven in general by prey which after adopting one of the
two classes of strategies for several generations uddenly shift to the other strategy. This
switch forces predators to shift their strategy acordingly. Thisis also shown in Figure 5
(right side) in which the reader can easily seethat the main source of variation is on the
X-axis which represents how performancevary for prey of different generations.

What acually happens in the experiments is not so simple & in the description we
have just given because of several fadors. (1) the strategies described are not single
strategies but classes of similar strategies. So for example there ae plenty of different
ways for the predator to approach the prey and different ways may have different
probabilities of being successful against the same opposing strategies, (2) the alvantage
or disadvantage of ead strategy against another strategy varies quantitatively and is
probabilistic (each strategy has a given probabil ity of beating a mwmpeting strategy); (3)
populations at a particular generation do not include only one strategy but a cetain
number of different srategies although they tend to converge toward a single one; (4)
different strategies may be eaier to discover or re-discover than others.

However the g/cling process between the different classes of strategies described
above @n he clealy identified. By analyzing the behavior of the best individuals of the
best smulation (the same & that described in Figures 3 and 4), for example, we @an see
that the strategy B, discovered and adopted by prey at generation 21 and then
abandoned after 15 generations is rediscovered and re-adopted at generation 58 and then
at generation 98. Similarly the strategy A,, first discovered and adopted by the predator
at generation 10 and then abandoned after 28 generations for drategy A;, is then
rediscovered at generation 57. Interestingly, however, prey also discover a variation of
strategy B; that includes also some of the dharaderistics of strategy B.,. In this case,
prey move in circles waiting for the predator as in strategy B;. However, as $on as they
detect the predator with their IR sensors, they start to move quickly exploring the
environment asin strategy B,. Thistype of strategy may in principle be effedive against
both strategies A1 and A2. However sometimes prey deted the predator too late,
especially when the predator approacdhes the prey from its left or right rear side which is
not provided with IR sensors.

This cycling dynamics is shown also in Figure 6 which represents the position of
the best predator and prey of successve generations in a two-dimensional phenotype
space To represent the phenotype space we mnsidered two measures that are
representative of the different srategies. the average speed and the average distance
from the cmpetitor (these two dimensions have been subjedively chosen to illustrate
the qualitative feaures of the behaviors that we observed). In the cae of the prey, two
different classes of phenotype arresponding to the strategies B; and B, can be clealy
identified. In the cae of predators, on the other hand, a continuum of strategies can be
observed between strategies that can be classified as typically A; or A,. In both cases,
however, examples of each class of strategies can be found in the first and in successive
generations, indicating that the same type of strategy is adopted over and over again.

10



2.4 Tegting individuals againgt all discovered solutions

In areceant article, Rosin and Belew [20], in order to encourage the emergence of
‘armsraces’ in a m-evolutionary framework, suggested saving and using as competitors
all the best individuals of previous generations:

Sq in competitive coewlution, we have two dstinct reasons to save
individuds. One reason is to contribute genetic material to future
generations; thisisimportant in ary ewlutionary algorithm. Seledion serves
this purpaose. Eliti sm serves this purpose diredly by making complete mpies
of topindividuals.

The second reason to save individuds is for purposes of testing. To ensure
progress we may want to save individuds for an arbitrarily long time and
continue testing aganst them. To this end, we introduce the ‘Hall of Fame',
which exends €elitismin time for purpases of testing. The best individud from
evey generation, is retained for future testing.

From Rosin and Belew [20], pp. 8.

This type of solution is of course implausible from a biological point of view.
Moreover, we may exped that, by adopting this tecnique, the effed of the -
evolutionary dynamic will be progressively reduced throughout generations with the
increase in number of previous opponents. In fad, as the process goes on, there is less
and less presaure to discover strategies that are dfective against the opponent of the
current generation and greader and greder presaure to develop solutions cgpable of
improving performance against opponents of previous generations.

However, as the aithors ow, in some caes this method may be more effedive
than a ‘standard’ co-evolutionary framework in which individuals compete only with
opponents of the same or of the previous generation. More specificdly, we think, it may
be away to overcome the problem of the cycling of the same drategies. In this
framework in fad, ad hoc solutions that compete successully against the opponent of
the aurrent generation but do not generalize to opponents of previous generations cannot
sprea in evolving populations.

We gplied the Hall of Fame seledion regime to our predator and prey framework
and measured the performance of each best individual against ead best competitor
(Master Tournament). Results are obtained by running a new set of 10 simulations in
which each individual is tested against 10 opponents randomly selected from all
previous generations (while in the previous experiments we seleded 10 opponents from
the immediately precaling generations). All the other parameters remain the same. As
shown in Figure 7 and 8, in this case, we obtain a progressive increase in performance

Figure 7 shows how in this case the average fitness of the best individuals tested
againgt all best competitors progressively increases throughout generations, ultimately
attaining rea to optimal performances. Figure 8 shows how this is acammplished by
being able to bea most of the opponents of previous generations. The results do not
exactly match the ideal situation described in Figure 5 (left side) in which predators and
prey are ale to bea all individuals of previous generations. In the best simulation
described in Figure 7 (bottom graph) and Figure 8, for example, there ae two phasesin
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which prey are unable to bea most of the predators of few generations before. The
general picture, however, approximates the ideal one.
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Figure 7. Performance of the best individuals of each generation tested against all the best opponents of
each generation (Master Tournament). The top graph shows the average result of 10 dfferent replications.
The battom graph shows the result in the best replicaion (i.e. the simulation in which predators and prey
attain the best performance). Data were smoathed using arolling average over threedata points.

generations prey

generations predator

Figure 8. Performance of the best individuals of each generation tested against all the best opponents of
each generation. Black dots represent individual tournaments in which the predators win while white dots
represent tournaments in which the prey wins. Result for the best smulation (the same shown in Figure
7.

If we look at the individual strategies slected throughout generations in these
experiments, we seethat they are of the same class of those described in the previous
sedion. However, in this case, the strategies are evolutionarily more stable (i.e. in
general they are not suddenly replaced by another strategy of a different clasg. This
enables the m-evolutionary processto progressively refine arrent strategies instead of

12



cycling between different classes of strategies, restarting each time from the same initial
strategy.

The fad that individuals are tested against quite different strategies (i.e. competitors
randomly seleded from all previous generations) should enable the evolutionary process
to find strategies that are more general (i.e. that are dfective againgt a larger number of
counter-grategies) than those obtained in the experiments described in the previous
sedion. To verify this hypothesis we tested the best 10 predators and prey obtained with
‘standard’ co-evolution against the best 10 predators and prey obtained with ‘Hall of
Fame' co-evolution (i.e. the best predator and prey of each replicaion were seleded).
As can be seen, ‘standard’ individuals have ahigher probability of defeaing ‘ standard’
individuals than ‘Hall of Fame' individuals (Figure 9, left side). Similarly, ‘Hall of
Fame' individuals have ahigher probability of defeding ‘standard’ individuals than
‘Hall of Fame' individuals (Figure 9, right side). Although, variability in different
replication is high, these results indicate that, in this case, ‘Hall of Fame' co-evolution
tends to produce more general solutions than ‘standard’ co-evolution. However,
differences in performance ae not as great as one could exped from the trends of the
Master Tournaments in the two conditions, which are quite different (we will be return
to this later on).

'standard' individuals 'hall of fame' individuals
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Figure 9. Graphs showing the average performance of the best individuas obtained with standard and
with ‘Hall of Fame co-evolution (left and right side, respedively). Performance obtained by testing
individuals against standard and ‘Hall of Fame' competitors is iown using white and gray histograms,
respedively. Verticd bars indicate standard deviation. Individuals are seleded by picking the predator
and the prey with the best score in the master tournament of each replicaion. Y-axis indicaes the
percentage of defeated competitors. Each column is the results of a separate test (individuals start with
different randomly assgned orientations).

2.5 How the length of ‘armsraces’ may vary in different conditions.

One of the simplification we alopted in our experiments is that the sensory-motor
system of the two spedesis fixed. However, as we will show below, the structure of the
sensory system can affed the course of the @-evolutionary processand the length of the
‘armsraces'.

One thing to consider in our experiments is that the prey has a limited sensory
system that enables it to percave predators only at a very limited distance and not from
all relative diredions (there ae no IR sensors able to detect predators approaching from
the rea-left and rea-right side). Given this limitation, the prey cannot improve its
strategy above a cetain level. They can compete with co-evolving predators only by
suddenly changing strategy as on as predators sled an effedive strategy against
them. However, if we increase the richness of the prey’s snsory system we may exped
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that the prey will be ale to overcome well adapted predators by refining their strategy
insteal of radically changing their behavior.
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Figure 10. Experiments with standard co-evolution (i.e, not Hall of Fame) and prey with camera too.
Performance of the best individuas of each generation tested againg all the best opponents of each
generation (Magter Tournament). The top graph shows the average result of 10 dfferent replicaions. The
bottom graph shows the result in the best replicaion (i.e. the simulation in which predators and prey
attain the best performance). Data were smoathed using arolling average over threedata points.

To investigate this hypothesis we ran a new set of simulations in which the prey
also was provided with a aamera able to detect the predators’ relative position. For the
prey we ansidered another turret under development at LAMI, which consists of an
1D-array of 150 photoreceptors which provide alinear image composed of 150 pxels of
256 gay levels each subtending a view-angle of 240° [14]. We dose this wider camera
because the prey, by escaping the predators, will only occasionally perceive opponents
in their frontal diredion. As, in the cae of predators, the visual field was divided into
five sedors of 48° corresponding to five simulated photoreceptors. As a consequence, in
this experiment, both predator and prey are controlled by a neural network with 13
sensory neurons. Moreover, in this case, both predator and prey could see their
competitors as a black spot against a white badkground. ‘Standard’ co-evolution was
used (i.e. individuals were tested against the best competitors of the 10 previous
generations and not against competitors slected from all previous generations as in the
experiments described in seaion 2.4). All the other parameters remained the same.

If we measure the average performance of the best predators and prey of each
generation tested againgt all the best opponents of ead generation (Master Tournament)

14



we seethat, although the prey in general overcomes predators’, a significant increase in
performance throughout generations is observed in both populations (Figure 10). Figure
11 shows the performance ajainst ead competitor for the best replicaion also shown in
Figure 10 (bottom graph).

generations prey

generations predator

Figure 11. Performance of the best individuals of each generation tested against all the best opponents of
each generation. Black dots represent individual tournaments in which the predators win while white dots
represent tournaments in which the prey wins. Result for the best ssimulation (the same as that shown in
Figure 10).

These results show how by changing the initial conditions (in this case by changing
the sensory system of one population) ‘arms races’ can continue to produce better and
better solutionsin both populations for several generations without falling into cycles.

Interestingly, in their simulations in which also the sensory system of the two co-
evolving populations was under evolution, Cliff and Miller observed that “.. pursuers
usually evolved eyes on the front of their bodies (like deetahs), while evaders usually
evolved eyes pointing sideways or even backwards (like gazelles).” [2, pp. 506]°.

To investigate whether also in this case ‘Hall of Fame' co-evolution outperforms
standard co-evolution we ran another set of experiments identical to those described in
this section but using the ‘Hall of Fame' seledion regime. Figure 12 shows the Master
Tournament measures obtained on average in this ond set of experiments. As
expected, performance measured using Master Tournament increased even more in this
seoond set of simulations (in particular, a larger increase in performance throughout
generations can be observed in the cae of prey). However, if we test individuals
obtained with standard co-evolution against individuals obtained with ‘Hall of Fame’
co-evolution we find that the latter do not outperform the standard individuals (see

4 This may be due to the fact that in this and in the experiments which will be presented in the next
sedions the sensory system of the prey have been enriched with resped to the experiments described in
sedion 2.3 and 2.4.

® The authors did not provide enough data in their paper to understand whether their smulations fell into
solution cycles. However, even though bath the nervous system and the sensory system were under co-
evolution in their case, it seemsthat Cliff and Miller did not observe any co-evolutionary progresstoward
increasingly general solutions. In fact, they report that ‘ co-evolution works to produce good pursuers and
goad evaders through a pure bodstrapping process but bath types are rather spedally adapted to their
opponents current counter-strategies.” [2, pp. 506]. However, it should ke noted that there are several
differences between Cliff and Miller experiments and aurs. The fitnessfunction used in their experiments,
in fact, is more cmplex and includes additional congraints that try to force evolution in a cetain
diredion (e.g. predators are scored for their ability to approach the prey and not only for their ability to
catch it). Moreover, the genotype-to-phenotype mapping is much more cmplex in their cases and
includes sveral additional parametersthat may effed the results oltained.
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Figure 13). On the ontrary, individuals obtained with standard co-evolution tend to
outperform individuals obtained with ‘Hall of Fame’ co-evolution.

As can be seen, individuals obtained by means of ‘standard’ co-evolution have a
higher probability of defeaing ‘Hall of Fame' than ‘standard’ competitors (Figure 13,
left side). Similarly, ‘Hall of Fame’ prey has a higher probability of defeating ‘Hall of
Fame’ than ‘standard’ predators (Figure 13, right side). Notice however that also in this
case, there is a high variability between different replicaions. Thus ‘standard’
individuals tend to be more dfedive than individuals obtained by ‘Hall of Fame' co-
evolution. However, ‘Hall of Fame’ predators are more likely to defea ‘standard’ than
'Hall of Fame' prey.
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Figure 12. Experiments with Hall of Fame; the prey is equipped with vision too. Performance of the best
individuals of each generation tested againg all the best opponents of each generation (Magter
Tournament). Average result of 10 different replications. Data were smoathed wsing a ralling average
over threedata paints.
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Figure 13. Graphs $iowing the average performance of the best individuals obtained with ‘ standard’ and
with ‘Hall of Fame co-evolution (left and right side, respedively). Performance obtained by testing
individuals againgt ‘ standard’ and ‘Hall of Fame' competitors is shown using white and gray histograms,
respedively. Verticd bars indicate standard deviation. Individuas are seleded by picking the predator
and the prey with the best score in the master tournament for each replicaion. Y-axis indicaes the
percentage of defeated competitors. Each column is the results of a separate test (individuals start with
different randomly assgned orientations).

From these results it may be concluded that although the ‘Hall of Fame’ seledion
regime always tends to reduce the probability of falling into limit cycles (see Figure 12
which shows how progressively more general solutions are seleded), it does not
necessarily produce better solutions that ‘standard’ co-evolution (seeFigure 13). When,
as in the cae described in this section, ‘standard’ co-evolution can produce ams races
of significant length, it may outperform ‘Hall of Fame’ co-evolution. Furthermore, by
continuing the evolutionary process the ‘Hall of Fame’ seledion regime might be even
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less effedive than ‘standard’ co-evolution given that, as mentioned ealier, the -
evolutionary dynamics tends to become progressively less effective throughout the
generations with an increasing probability of opponents from previous generations
being seleded.

The fad that the structure of the sensory-motor system of the two spedes can
significantly affed the course of the evolutionary process demonstrates the importance
of using real robots instead of simulated agents. Real robots and natural agents, in fad,
have sensory-motor apparatus which rely on measures of physicd entities (light, sped,
etc.), which have limited precision, which are affeded by noise d@c. Simulated agents
instead, often adopt sensors and motors which have idedlized charaderistics (e.g.
sensors which have infinite precision or which measure @strad entities such as
distances between objeds). Moreover, in the cae of simulated agents, the experimenter
may unintentionally introduce constraints which channel the experiment in a cetain
diredion.

2.6 The role of environmental richness

In the previous eaion we showed how the length of ‘arms races’ (i.e. the number
of generations in which co-evolving populations produce drategies able to defea a
progressively larger number of counter-strategies) may vary in different conditions. If
both co-evolving populations can produce better and better strategies given their initial
organization, ‘arms races may last several generations. Conversely, if one or both
populations fail to improve their current strategy sufficiently, it is likely that the -
evolutionary dynamics will quickly lead to a limit cycle in which similar strategies are
rediscovered over and over again.

Another fador that may prevent the cycling of the same strategies is the richness of
the environment. In the cae of co-evolution, competing individuals are part of the
environment. This means that part, but not all, of the environment is undergoing co-
evolution. We may hypothesize that the probability that a sudden shift in behavior will
produce viable individuals is inversely proportiona to the richness of the environment
that is not undergoing co-evolution. Imagine, for example, that an ability acquired under
co-evolution, such as the ability to avoid inanimate obstacles, involves a charaderistic
of the eavironment which is not undergoing co-evolution. In this case it is less likely
that a sudden shift in strategy involving the lossof this ability will be retained. In fad,
the aquired charader will always have an adaptive value independently of the arrent
strategies adopted by the @-evolving population. The same agument applies to any
case in which one population is co-evolving against more than one other population.
The probability of retaining changes involving a sudden shift in behavior will decrease
because, in order to be retained, such changes would have to provide an advantage over
both co-evolving populations.

To verify this hypothesis we ran a new set of experiments in which individuals
experienced 5 different environments (i.e. they were tested for 2 epochs in each of the 5
environments instead of 10 epochs in the same environment). All the other parameters
were the same & those described in sedion 2.1. In particular ‘standard’ co-evolution
and prey without camera were used. Figure 14 shows the five environments which
varied in shape and in the number and type of obstacles within the aena.
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(1) (2) (3) (4) (5)

Figure 14. Five different environments. Environments 1 and 2 consisted o an arena measuring 60x& cm,
3and 4 by an arenaof 47x47cm, and 5 by an arena of 35x35cm. Environments 1, 2, and 3also contained
cylindricd obstacles with a diameter of 2.3 cm. Finally, environment 1 included an inside wall 2 cm
thick dividing the arenainto two rooms conneded by an open door about 14 cm wide.

If we measure the average performance of the best predators and prey of each
generation tested againgt all the best opponents of ead generation (Master Tournament)
a significant increase in performance throughout generations is observed in some
replications (see for example the bottom graph in Figure 15 showing the results of the
best replication). The average results, however, show a dight increase only in the first
20 generations (seetop graph in Figure 15).
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Figure 15. Performance of the best individuals of each generation tested againg all the best opponents of
each generation (Master Tournament). The top graph shows the average result of 10 dfferent replications.
The battom graph shows the result in the best replicaion (i.e. the simulation in which predators and prey
attain the best performance). Data were smoathed using arolling average over threedata points.

From these results it may be ancluded that, as hypothesized at the beginning of
this section, the richness of the environment may delay the @nvergence of the -
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evolutionary processtowards a limit cycle. On the other hand we should consider that
larger the number and importance of fixed constraints is, the lower the importance of
the a-evolutionary dynamic may be. A rich continuum of possibilities between an
extreme in which the environment is constituted only by the competitor and another
extreme in which the competitor is one within several different sources of constraints
should be cnsidered. It may be that interesting co-evolutionary dynamics only arise in
agiven interval between these two extremes.

2.7 How co-evolution can enhancethe alaptive power of artificial evolution

In the previous sdions we showed how ‘arms races between co-evolving
populations can arise. At this point we should try to verify whether co-evolution can
really enhance the alaptive power of artificial evolution. In other words, can artificial
co-evolution solve tasks that cannot be solved using a simple evolutionary process?

There ae two reasons for hypothesizing that co-evolution can have an higher
adaptive power than evolution. The first reason is that individuals evolving in co-
evolutionary frameworks experience alarger number of different environmental events.
The second and more important reason is related to the anergence of ‘armsraces.

To verify if co-evolution can produce solutions to problems that evolution alone is
unable to solve we tried using simple evolution (i.e. an evolutionary processin which
only a single population was evolved through seledive reproduction and mutation).
More specifically we tried to evolve predators able to cach the best prey obtained using
artificial co-evolution. Likewise, we tried to evolve prey able to escgpe the best
predators obtained by co-evolution. If evolution fails, at least in some caes, we may
conclude that co-evolution is able to seled better individuals than simple evolution. In
other words, we may conclude that co-evolution is able to produce solutions to
problems that evolution is unable to solve.

We ran several sets of simulations in which we tried to evolve individuals able to
cach the best co-evolved prey and to escgpe the best co-evolved predator obtained from
al the eperiments described in the previous fdions. The parameters used in the
simulations were the same & those described in sedion 2.1 athough only one
population was aubjeded to the evolutionary process (the predator to escape or the prey
to be caight remained identicad over the entire evolutionary procesg. As a mnsequence
individuals were tested for 10 epochs and 100 generations against exadly the same
opponent. In all cases simple evolution was able to produce better and better individuals
until optimal or close to optimal performance was obtained.

In order to produce a tallenge that was too complex for smple evolution it was
necessary to change the sensory system of the predator and prey and to use a more
complex environment than the simple aena involved in most of the experiments
described above.

We ran a new set of co-evolutionary experiments in which predator and prey were
not equipped with cameras but were dlowed to use the 8 ambient light sensors added in
the basic Khepera module. Moreover, we included a 1 watt lamp on the top of both
predator and prey so that ead could obtain an indired measure of the angle and
distance of the other. The genotype of both predator and prey was 8 x (36 synapses + 2
thresholds) bits long. As environment, we used an arena measuring 6x60cm with 13
cylindrical obstacles (see @vironment 2 in Figure 14). The ‘standard’ seledion regime
was used. For al other parameters the same values described in section 2.1 were used.

19



100

754

507
“he

0

fitness

0 25 50 75 100
generations

100

754

507
e

254

fitness

generations

Figure 16. Experiments with the complex environment and predators and prey equipped with ambient
light sensors (‘standard’ co-evolution). Performance of the best individuals of each generation tested
againgt al the best opponents of each generation (Master Tournament). The top graph shows the average
result of 10 dfferent replications. The batom graph shows the result in the best replicaion (i.e. the
simulation in which predators and prey attain the best performance). Data were smoathed using arolling
average over threedata points.

If we look a the Master Tournament performance, we can see how a significant
increase may be observed both on average ad in the case of the best replicaion.
Moreover, we can seehow, unlike the experiments described in the previous sction, in
this case predators of the very first generations have close to null performance This
implies that they are unable to catch most of the prey of succealing generations.

We then ran a new set of experiments in which simple evolution (i.e. evolution of a
single population against a fixed opponent) was used to seled predators able to catch
the best co-evolved prey obtained in the experiments just described. Similarly we used
simple evolution to seled prey able to escgpe the best co-evolved predators.

Evolving predators only Evolving prey only

performance performance

replication replication

10 0 generations 10 0 generations

Figure 17. Performance of evolving predators and prey against fixed co-evolved opponents (l€eft to right,
respedively). Each graph shows the results of 10 experiments in which the best prey and predator
obtained in the 10 co-evolutionary experiments described above were used as fixed goponents. Average
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results of 10 succealing generations are shown. Results have been sorted on the replication axis to
enhancereadabil ity.

As can be seen in Figure 17, which shows the performance of the best evolving
predators and prey, in 8 cases out of 10 simple evolution failed to select predators able
to cach the m-evolved prey (the best individuals of 8 simulations are ale to catch the
prey lessthan 15% of the time). Conversely, the best co-evolved predators were ale to
cach the best co-evolved prey at least 25% of the time in 9 out of 10 simulations. The
reason why simple evolution was not always siccessul was that predators of the first
generations were scored with a null value (predators were able to catch the fixed prey
onceonly occasionally, while their off spring usually failed to catch the same prey). Asa
consequence, the seledion mechanism could not operate.

The fad that in this case -evolution was able to produce more complex
challenges than in the other experiments described in the previous sction seamns to be
due to the aility of the prey to use the information coming from the ambient light
sensors. Mogt of the a-evolved prey waited for the predator until it reached a distance
of about 100 mm and only then did they start to escgpe. This allowed the prey to force
the predator to follow them with little chance of catching them given the difference in
spead. Moreover, it eiminated the risk of facing the predator head on by moving fast
even when the predator was far away.

It should be noticed, however, that evolution of a single population can creae very
effedive prey againgt the best of co-evolved predators (see Figure 17, right side). This
implies that, in this case, it is always possible to find a simple strategy able to defeat
each single individual predator. As we mentioned above, this is what happens for both
predator and prey in all experiments described in the previous ®dions.

3. Discussgon

Evolutionary Robotics is a promising new approach to the development of mobile
robots able to act quickly and robustly in real environments. One of the most interesting
fedures of this approach is that it is a completely automatic process in which the
intervention of the experimenter is pradically limited to the specificaion of a aiterion
for evaluating the extent to which evolving individuals acoomplish the desired task.
However, it is gill not clear how far this approad can scde up.

From this point of view, one difficult problem is given by the fad that the
probability that one individual within the initial generations is able to acamplish the
desired task, at least in part, is inversely proportional to the complexity of the task itself.
For complex tasks, it is very likely that all individuals of the initial generations are
scored with the same zeo value and, as consequence, the selection mechanism might
result in a mere random process We will refer to this problem as the boatstrap problem.

This problem arises from the fad that in artificial evolution people usualy start
from scratch (i.e. from individuals obtained with randomly generated genotypes). In
fad, one possble solution to this problem is the use of ‘incremental evolution’. In this
case, we start with a simplified version of the task and, after we get individuals able to
solve such a simple cae, we progressively move to more and more mmplex cases [5,
10, 13]. Thistype of approach can overcome the bootstrap problem, although it also has
the negative cnsequence of increasing the amount of supervision required and the risk
of introducing inappropriate constraints. In the cae of incremental evolution in faa, the
experimenter should determine not only an evaluation criterion but also a ‘ pedagogical’
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list of simplified criteria. In addition the experimenter should decide when to change the
seledion criterion during the evolutionary process Some of these problems may arise
also when the seledion criterion includes rewards for sub-components of the desired
behavior (although, in this case, the selection criterion is left unchanged throughout the
evolutionary procesy [17].

Another possible solution of the bootstrap problem is the use of co-evolution. Co-
evolution of competing populations, in fad, may produce increasingly complex
evolving challenges gontaneously without any additional human intervention.
Unfortunately, no continuous increase in complexity is guarantead. For example, the -
evolutionary processmay fall into a limit cycle in which the same solutions are aopted
by both populations over and over again (we will refer to this problem as the cyding
problem). What happens is that at a cetain point one population, in order to overcome
the other population, finds it more useful to suddenly change its grategy instead of
continuing to refine it. Thisis usually followed by a similar rapid change of strategy in
the other population. The overall result of this process is that most of the charaders
previously acquired are not appropriate in the new context and therefore ae lost.
However, later on, a similar sudden change may bring the two populations back to the
original type of strategy so that the lost charaders are likely to be rediscovered again.

The effed of the cycling problem may be reduced by preserving all the solutions
previously discovered for testing the individuals of the arrent generations [20].
However, this method has drawbadks that may affect some of the alvantages of co-
evolution. In fad, as the process goes on there is less and less presaure to dscover
strategies that are effedive against the opponent of the aurrent generation and increasing
pressure to develop solutions able to improve performance ajainst opponents of
previous generations which are no longer under co-evolution. While in some caes
testing individuals against a sample of all previoudy seleded competitors may produce
better performance (as shown in sedion 2.4), in other cases this might not be true.
Indeed it may even result in lesseffective individuals (seesedion 2.5).

We believe that the cycling problem, like the local minima problem in gradient-
descent methods (i.e. the risk of getting trapped in a sub-optimal solution when all
neighboring solutions produce adeaease in performance), is an intrinsic problem of co-
evolution that cannot be diminated completely. However, as we have shown in sedions
2.5 and 27 the g/cling problem does not always aff ect the m-evolutionary dynamics
strongly as to prevent the emergence of ‘arms races’. When both co-evolving
populations can produce better and better strategies, ‘arms races may last several
generations and produce progressively more cmplex and general solutions. On the
other hand, if one or both populations cannot improve their current strategy sufficiently,
the -evolutionary dynamics will probably quickly lead to a limiting cycle in which
similar strategies are rediscovered over and over again.

Despite the cycling problem, it can be shown that in some ses co-evolution may
succeal in producing individuals able to cope with very effective competitors (by
seleding the cmpetitors a the same time) while smple evolution is unable to do so
(see sedion 2.7). The reason for this is that co-evolution, by seleding also the
competitors that determine the complexity of the task, is not affected by the ‘bootstrap
problem’. On the other hand, when simple evolution is faced with fixed co-evolved
competitors, it may happen that the genetic operators are unable to generate aly
individual able to defeat the cmpetitor, even in a few cases. As a mnsequence the
seledion processdoes not work.
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Moreover, it should be noted that some fadors may limit the cycling problem. One
of these fadors is, as we have shown in sedion 2.6, the richnessof the environment. In
the cae of co-evolution, competing individuals are part of the eavironment. This means
that part, but not al of the environment, is undergoing co-evolution. The probability that
a sudden shift in behavior will produce viable individuals is inversely proportional to
the richness of the environment that is not undergoing co-evolution. In fad, if an
aaqquired ability involves a charaderistic of the ewironment which is not undergoing
co-evolution it is lesslikely that a sudden shift in strategy involving the lossof such an
ability will be retained. Indeed the aquired charader will always have an adaptive
value independently of the strategies adopted by the w-evolving population. This effect
may be particularly significant in the case of natural evolution in which, in general, the
environment is much richer than in the cae of the experiments performed in artificial
evolution.

Another fador that may limit the effea of the cycling problem is ontogenetic
plasticity. Plastic individuals, in fact, may be able to cope with different classes of
strategies adopted by the secnd population by adapting to the airrent opponent's
strategy during their lifetime, thus reducing the adaptive advantage of a sudden shift in
behavior which causes the cycling problem. The experiments described in this paper did
not suppat this issue (none of the experiments described in this paper involved
ontogenetic plasticity). On the effects of some forms of ontogenetic plasticity within a
co-evolutionary framework see[8].

3.1 A dynamical view of adaptation

We have thus been able to show that, at least in one case, co-evolution can produce
a strategy that is too complex for simple evolution to cope with (sedion 2.7). However,
in the other 3 cases examined (seesedion 2.3, 2.5, and 2.6) evolution was quickly able
to seled individuals that proved very effedive ajainst such complex strategies. In
particular this happened also with the strategies obtained in the experiments described in
sedion 2.5 and 26 in which Master Tournament measures clealy indicated a progress
throughout generations. This means that, even though more axd more general strategies
were selected in these experiments through co-evolution, it was always easy to select
individuals able to defea these strategies by starting from scratch. Further proof of this
is that if we look at the performance of the best individuals of the last generations we
see that, even though they score increasingly better against individuals of previous
generations on average, they may sometimes be defeated by individuals of many
generations before (seefor example Figures 8 and 11).

These results point to the conclusion that in certain tasks it is always possible to
find a simple strategy that is able to defea another single, albeit complex and general,
strategy (although such simple strategy is a specialized strategy, i.e. it is able to defea
only that individual complex and general strategy and, of course, other similar
strategies). If this is redlly true, in other words, if completely general solutions do not
exist in some caes, we should re-consider the ‘cycling poblem’. From this point of
view, the fad of a w-evolutionary dynamics leading to a limit cycle in which the same
type of solutions are adopted over and over again should not be mnsidered as a failure
but as an optimal solution. We aannot complain that co-evolution does not find a more
general dtrategy able to cope with all the strategies adopted by the w-evolving
population during a cycle if such general strategies do not exist. The best that can be
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done is to sdled the gpropriate strategy for the aurrent counter-strategy, which is
adually what happens when the @-evolutionary dynamics ends in alimit cycle.

More generally we can predict that co-evolution will leal to a progressive increase
in complexity when complete general solutions (i.e. solutions which are successful
againgt all the strategies adopted by previous opponents) exist and can be seleded by
modifying the aurrent solutions. Conversely, if complete general solutions do not exist
or the probability of generating them is too low, co-evolution may leal to a cycling
dynamics in which solutions appropriate to the strategy of the @m-evolving population
but which can also easily be transformed so to match other strategies will be seleded. In
other words, when general solutions cannot be found, it becomes important for ead
evolving population to be ale to dynamically change its own strategy into one of a set
of appropriate strategies. From the individuals point of view, we may say that
individuals with a predisposition to change in certain diredions will be seleded.

Interestingly, one @n argue that these dynamics may be an ideal situation for the
emergence of ontogenetic adaptation. The aility to adapt during one's lifetime to the
opponent's grategy would in fact produce a significant increase in the alaptation level
of asingle individual because ontogenetic adaptations are much faster than phylogenetic
ones. Therefore, we may hypothesize that, when a @-evolving dynamics leals to a
limiting cycle, there will be ahigh selective presaure in the diredion of ontogenetic
adaptation. At the same time, the cycling dynamics will creae the conditions in which
ontogenetic adaptation may more eaily arise because, as we have seen, individuals with
a predisposition to change in certain directions will be seleded. It is plausible to argue
that, for such individuals, a limited number of changes during ontogeny will be &le to
producethe required behavioral shift. In other words, we can argue that it will be easier
for co-evolving individuals to change their behavior during their lifetime in order to
adopt drategies alrealy seleded hy their close ancestors thanks to the oycles occurring
in previous generations.

Noticethat although an individual which has a single strategy able to defed a set of
counter-grategies and an individual which posses a set of different strategies able to
defea the same set of counter-srategies are equivalent at a cetain level of description
there ae some important differences (to distinguish the two cases let us call the former
‘full-general’ and the latter ‘plastic-general’). The plastic-general individual should be
able to seled the right strategy given the aurrent competitor. In other words, should be
able to adapt through ontogenetic adaptation. From this point of view the full-general
individual will be more dfedive becaise it does not require such adaptation process
and may provide immediately the @rrect answer to the aurrent competitor. On the other
hand, as we said above, it may be that in certain conditions a full y-general individual
cannot be seleded because afully-general strategy does not exist or becaise it is too
improbable that the esolutionary processis able to find it. In this case the only option
left is that of plastic-general solutions. However also a plastic-general individual is
difficult to dbtain because it implies that such individual should be able to display a
variety of different strategies and because it should also be able to select the right
strategy at the right moment (depending on the behavior of the airrent competitor).
What is interesting is that, when a full y-general strategy cannot be found, co-evolution
will fall into a cycling dynamics in which a set of ‘ specialistic’ strategy will be discover
over and over again. Now, because during this phase the best thing individuals can do to
improve the dhances of survival of their offspring is to produce offspring which can
evolutionary change their strategy as fast as possible (in other words individuals which
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have apredisposition to change in certain directions) we may exped that the length of
the cycles will be progressively shortened throughout successive generations. At this
point, we might speaulate that co-evolution might favor the emergence of individuals
with the aility to modify their behavior during lifetime in the most appropriate
diredions (the same diredions for which a predisposition to change have been
geneticaly aauired), if the genotype ould allow for some type of phenotypic
modification.

Of course, thisis only a hypothesis. The only results we have from the experiments
we described in this paper is that in most of our experiments simple ‘specialist’
solutions can be found while fully-general solutions cannot. It remain to be acertained
if plastic-general solutions (i.e. solutions which consists of a set of simple ‘ specialist’
solutions and a mechanism for seleding the right one during lifetime) can be seleded.
Preliminary evidences have been described in [8].
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