
Distributed Multi-Robot Area Patrolling in Adversarial
Environments

Tauhidul Alam
∗

Matthew Edwards
†

Leonardo Bobadilla
∗

Dylan Shell
†

ABSTRACT
Multi-robot patrolling is the problem of repeatedly visiting a group
of regions of interest in an environment with a group of robots to
prevent intrusion. Early works proposed deterministic patrolling
algorithms which could be learned by an adversary observing them
over time. More recent works provide non-deterministic patrolling
schemes, but these are limited to perimeter patrolling and require
coordination and/or synchronization. Here we investigate the prob-
lem of finding robust and scalable strategies for multi-robot pa-
trolling under an adversarial environment. We present algorithms
to find different distributed strategies for a patroller in the form
of Markov chains which use convex optimization to minimize the
average commute time for an environment, a subset of the environ-
ment, or a specific region of an environment. Additionally, we use
these strategies in a game theoretical setup to form a payoff ma-
trix to obtain an optimal mixed strategy for patroller. Our results
show the scalability and applicability of our approach in different
types of environments. Despite the lack of synchronization and co-
ordination among patrollers, our approach performs competitively
compared to existing methods.

1. INTRODUCTION
Patrolling is the problem of repeatedly visiting a group of lo-

cations in an environment. This problem has applications in such
areas as environmental monitoring, infrastructure surveillance, and
border security. In the multi-agent version patrolling is performed
by multiple robots working together to ensure the safety of the
area under surveillance. In its adversarial setting, one or more
adversaries attempt to penetrate the environment being patrolled.
Patrolling schemes can be further categorized into perimeter pa-
trolling or area patrolling.

Multi-robot patrolling has been investigated in many different
studies. Initial research proposed deterministic approaches based
on the optimization of the frequency of visits to the regions in
the environment [3, 4, 5, 6]. A survey of multi-agent patrolling
strategies can be found in [1] where strategies are evaluated based
on robot perception, communication, coordination, and decision-
making capabilities. However, an adversary can easily penetrate
the perimeter or area if a deterministic patrolling is used. For exam-
ple, if a patrolling strategy ensures that a region around a perimeter
is visited every 20 seconds and it takes an adversary 15 seconds to

∗Tauhidul Alam and Leonardo Bobadilla are with the School of
Computing and Information Sciences, Florida International Uni-
versity, Miami, FL, USA.talam005,bobadilla@cs.fiu.edu
†Matthew Edwards and Dylan A. Shell are with the De-
partment of Computer Science and Engineering at Texas
A&M University, College Station, Texas, USA.medwards92,
dshell@cse.tamu.edu
This work was supported by the NSF via Awards CNS-#1263124,
IIS-#1302393, and the CTE-Montague Scholar fund.

breech the perimeter, then the adversary is guaranteed success by
attacking just after the region is visited [8].

Motivated by the presence of adversaries and the need for unpre-
dictability, Agmon et al. [8] presents perimeter patrolling strategies
based on Markov chain models that maximize the probability of
detecting an adversary [8, 12, 14]. In this line of research, only
cyclic graphs were considered, and the robots have to be synchro-
nized and tightly-coupled, limiting deployments of these strategies
practically. Moreover, all robots have to be placed in known loca-
tions and with equal separation distances in the environment. Sak et
al. [7] consider an empirical non-deterministic approach for general
graphs rather than a perimeter. However, only experimental results
were presented without formalization or algorithmic details.

The problem of patrolling in the presence of adversaries can also
be formulated as aBayesian Stackelberg Game. In this game theo-
retical setting, the patroller first commits to an optimal mixed strat-
egy generated through DOBSS (Decomposed Optimal Bayesian
Stackelberg Solver) [11] where each strategy is a path in a fully
connected graph. Once the patroller has decided its mixed strategy,
the adversary may use knowledge of the mixed strategy to choose
a region to attack. One drawback of this approach is that the set
of strategies (paths) should be chosena priori from a large set of
possible paths and the particular connectivity of the graph is not
studied in detailed.

Also related to our work is the problem of minimizing the effec-
tive resistance of a graph through convex optimization. This prob-
lem finds its original motivation in electrical networks where the
solution is a measure of how well “connected" the network is [9].
The concept of effective resistance can be applied to Markov chains
where minimizing the resistance between vertices on a graph cor-
responds to minimizing the commute times between vertices. With
this application, robots patrolling on a graph with Markov chains
would be able to quickly travel between every pair of vertices.

The purpose of our work is threefold. First, we would like to ex-
tend current ideas into more general class of graphs. The previous
perimeter ideas can be extended to general graphs but this will need
first finding a Hamiltonian cycle which is an NP-complete prob-
lem. Second, we would like to remove the need for communica-
tion, synchronization, and known initial placement of the random-
ized patrolling strategies. This will allow patrolling algorithms to
be implemented with simple robots, in a decentralized fashion, and
in communication denied environments. Third, we would like to
adapt the game theoretical setup [11] to use Markov chains instead
of deterministic strategies and to be applied to different graphs.

Randomized strategies based on Markov chains are used in our
work for several reasons: 1) These will make it harder for an ad-
versary to successfully complete an attack due to the unpredictabil-
ity of the strategies; 2) A randomized motion can be easily imple-

mented in a mobile robot, since its communication, sensing, and
computation requirements are minimal; and 3) Efficient algorithms
can calculate Markov chains with desired properties [9].

The contributions of the paper are as follows:

• We present algorithms that do not require communication, are
based on convex optimization, can scale well, and can also be
applied to any type of environment represented as a graph.

• We present a game theoretical approach to patrolling where the
set of strategies are Markov chains. We also calculate the pay-
offs of each strategy and present approaches to generate the op-
timal mixed strategy for patroller and the optimal strategy for
the adversary.

The remainder of the paper is organized as follows: Section II
presents the problem formulation; Section III introduces algorithms
to find decentralized and distributed strategies for multi-robot pa-
trolling and a game theoretical approach for finding optimal strate-
gies; Section IV presents experimental results of our approach; and
Section V discusses our conclusions and future directions for re-
search.

2. PROBLEM FORMULATION
We define the patrolling environment as anundirected graph,

G= (V,E) with |V|= n, |E|= m. Each vertex (v∈V) corresponds
to a region, and each edge (e∈ E) corresponds to a connection be-
tween two regions in the environment. LetM be a discrete time
Markov chain on the graph withMi j , the probability of transition-
ing between vertexi and vertexj. In this form, the patrollers need
to know which node they are at in the graph when they arrive there
to use the right weighting for outgoing edges. Once the robot has
determined that it is at vertexk, it selects thek-th column from
M, and uses this to weight its random choice of next vertex to
visit. This is weaker than having to know your(x,y) locations at all
times: indeed, given an initial location, a way of distinguishing the
outgoing edges (e.g., in clockwise order), and a sensor which indi-
cates to a robot that it has arrived at a vertex, no other localization
information is required.

The worst case scenario for patrollers is when they do not know
where an adversary is going to attack and they are not certain about
their initial positions in the graph. In this case, it is better to find a
strategy for patrollers that minimizes the average commute or hit-
ting time between every pair of vertices. Thehitting time, Hi j , is
the (random) time taken to reach vertexj starting from vertexi us-
ing the Markov chain. Thecommute time, Ci j , is the time it takes
to travel from vertexi to vertex j and back using the Markov chain,
Ci j =Hi j +H ji . The average hitting time,̄H, and average commute
time,C̄, for a Markov chain in a graph are the times averaged over
all pairs of vertices. In this context, the patrolling problem will be
defined as:

Problem 1: Finding randomized patrolling strategies
Given the graph, G= (V,E), find distributed strategies that mini-
mize average commute time (C̄) or average hitting time (̄H): 1) for
all vertices in V ; 2) for a clique v1...vd ∈ V, d≤ n; and 3) to a
particular vertex v∈V

We also explicitly model an adversary who (1) knows all possi-
ble strategies that a patroller can choose, (2) has full knowledge of
the environment, and (3) is able to optimally choose the vertex to
attack in graphG. This scenario is known as aBayesian Stackel-
berg Gamewhere the two players of the game are the patroller and
the adversary. In our proposed game theoretical setup, each pa-
troller’s strategy is a Markov Chain. The adversary also has a set of
strategies to attack in any of then vertices. The game is formulated
as follows:

• A nonempty, finite set called the set of patrolling strategiesM =
{M1, ...,Mk} where k is the number of Markov chains.

• A nonempty, finite set called the set of adversary strategiesV.
Eachv∈V is a vertex in the graph.

• A functionP : M ×V −→R∪{∞} called the payoff matrix for
the patroller.

• A functionQ : M ×V −→R∪{∞} called the payoff matrix for
the adversary.

To calculate both payoff matrices, we need the following values:

• dpat
i : value of goods in region/vertexi to the patroller.

• dadv
i : value of goods in region/vertexi to the adversary.

• cpat
i : reward to the patroller of catching the adversary in thei-th

region (or equivalently thei-th vertex).

• cadv
i : cost to the adversary of getting caught in thei-th region

(or vertex).

• pi : the probability that the patroller will catch the adversary at
the i-th vertex/region of the environment.

A patroller’s reward must consider the factorcpat
i for capturing

the adversary (with probabilitypi) and also the value lost when the
adversary is not captured (probability 1− pi). Conversely, the ad-
versary is pays costcadv

i (with probability pi) but gainsdadv
i : with

1− pi . Additionally, pi also depends on thei-th hitting time of the
Markov chain for each patrolling strategy. Given these definitions,
we are interested in the following problem:

Problem 2: Generating the optimal strategies
Given the payoff matrices, P and Q, the set of patroller strategies,
M , the set of strategies for adversary, V , find the optimal mixed
strategy for the patroller and the optimal strategy for the adversary.

3. METHODS
In this section, we present algorithms to generate patrolling strate-

gies and a game theoretical approach to obtain optimal strategies.

3.1 Distributed Patrolling Strategies
As mentioned before, we consider patrolling strategies in a graph

as Markov chainsM . Gosh et al. [9] define the effective resistance
between two verticesi and j in a graph asRi j . They also define the
nonnegative conductance on edgel asgl which is a weight that can
be assigned to an edge of a graph.Ri j is small when there are many
paths between verticesi and j with high edge weights and is large
when there are fewer paths between verticesi and j with low edge
weights. In [9], thetotal effective resistance, Rtot is the sum of the
effective resistances between all pairs of vertices,

Rtot =
1
2

n

∑
i, j=1

Ri j = ∑
i< j

Ri j (1)

Rtot is related to the average commute time (C̄) of the Markov
chain.

In this work, an environment with small total effective resistance
corresponds to a Markov chain with small hitting or commute times
between vertices, and a large total effective resistance corresponds
to a Markov chain with large hitting or commute times between at
least some pairs of vertices. In [9], a convex optimization method is
proposed for minimizing the total effective resistance of the graph
by allocating a fixed total conductance among the edges:

minimize Rtot

subject to 1Tg= 1, g≥ 0
(2)

The optimization variable isg∈ Rm, the vector of edge conduc-
tances. In our patrolling strategies, the totaleffective resistance
minimization problem(ERMP) is equivalent to the problem of se-
lecting weights on edges to minimize the commute (or hitting) time
between vertices. OnceRi j is considered as distances among the
vertices, the ERMP is the problem of allocating the edge weights
to a graph to make the graph small in terms of average distance
between vertices.

The relationship between commute time,Ci j , and effective resis-
tance,Ri j , between vertexi and j is the following [9]:

Ci j = (1Tg)Ri j

Using this relationship, we present our first patrolling strategy of
minimization of average commute time(MACT) on a graph follow-
ing equation (2).

In the second patrolling strategy, we have also extended the MACT
problem for a subset of vertices or clique. This extension ensures
a higher probability of travelling along the edges within the sub-
set of vertices while still allowing for travel to the remaining ver-
tices of the graph. For example, the edgese= {shortestPath(i, j),
shortestPath(j,k), shortestPath(k, i)}, wheree∈ E, are given pri-
ority. This means that the edges along this shortest cycle will be
optimized such that the edge weights will consist of the majority of
the sum of all edge weights. We extend the ERMP as follows:

minimize Rtot

subject to 1Tg= 1, g≥ 0

e= shortestCycle(s),

∑
e

w(e)≥ t

(3)

In this problem, the variableerepresents an edge along the short-
est cycle between the vertices in subset,s, of V. The condition
∑ew(e) ≥ t ensures that the sum of the edge weights ofw(e) ∈ g
will be greater than or equal to a threshold that represents the per-
centage of edge weights allocated to the cycle.

Algorithm 1 MACTtowardsVertices(A,b)

Input: A,b(·) {Incidence matrix and edge costs of graph}
Output: M = {M1, ..,Mn} {Markov chains for each vertex}
1: M ← 0
2: for i = 1 ton do
3: M(n×n)← 0
4: for j = 1 ton do
5: if j == i then
6: for all edgesejb ∈ A do
7: M jb←M jb +1
8: end for
9: continue

10: end if
11: k← kShortestPaths(b(·), j, i)
12: for all edgeseab∈ k do
13: Mab←Mab+1
14: end for
15: end for
16: normalizeM
17: M ←M ∪M
18: end for
19: returnM

Let A be ann×m incidence matrix of a graphG= (V,E) where
n= |V| andm= |E|. Suppose edgel connects verticesi and j. We
defineAil = 1, A jl = −1, and all other elements 0. Letb : E→

10

15

20

25

30

35

MACT MACT(Random) BMP DCP DNCP

F
irs

t H
itt

in
g

T
im

e

Figure 1: Comparison result of our MACT method with uni-
form and random robot placement as well as existing three
methods (e.g. BMP, DCP, DNCP) [8] for patrolling. Each line
represents the maximum, minimum first hitting time and each
box represents the median along with the mean hitting time in
the middle.

R+ denote the distance associated with each edge in graphG. We
present an algorithm for MACT towards each vertex.

Algorithm 1 generates a set ofn Markov chains,M , that mini-
mizes the commute time towards every vertexv∈V for the graph
G. For every Markov chain, thek shortest paths fromv j to the target
vertexvi are found (line 11). Thek shortest paths are found using
Yen’s algorithm [15], which has a worst case runtime ofO(n2).
After the k shortest paths are found, every edge transition found
within thek paths is incremented in the Markov chain that is being
generated (lines 12-14). Whenv j = vi , all possible edge transitions
from the target vertexv j to adjacent vertices are incremented (lines
5-8). After all paths have been explored for a Markov chain,M is
normalized and is added to the set of Markov chainsM .

3.2 Game Theoretical Approach
The game theoretical approach has two stages; the first stage cal-

culates payoff matrices, the second stage generates optimal strate-
gies.

Payoff Matrices Calculation:
The payoff matrices for patroller and adversary,P andQ, are cal-

culated from the set of Markov chains,M . We calculaten Markov
chains from Algorithm 1 and we also have two other Markov chains
from MACT for all vertices and MACT for a subset of vertices or
clique. Now we haven+ 2 Markov chains in the set of Markov
chains,M .

In Algorithm 2, we present a procedure to calculate the payoff
matrices. The algorithm assigns uniform values of goods (dpat

i ,dadv
i)

in each vertex for both the patroller and the adversary. It calculates
the hitting time matrix,H, (line 6) for each Markov chain. The
mean hitting time vector (lines 8-10),mht, is calculated using the
functionHTo f Pre f erredVertices. This function takes the vertices
involved in the Markov chain optimization as follows: 1) In the
case of MACT strategy, it calculates the mean of the hitting times
for all vertices; 2) In the case of MACT for a subset of vertices or
clique, it takes mean hitting time for the subset of vertices; and 3)
In the case of MACT toward each vertex, it takes the hitting time
towards that particular vertex. In lines 16-24, it assigns the values
to the variables needed to calculate the payoff matrices. In lines

25-28, it calculates the payoff matrices using these variables.

Algorithm 2 PayoffMatrixCalculation(M)

Input: M = {M1, ..,Mn+2} {Markov chains for all patrolling
strategies}

Output: P,Q {Payoff matrix for patroller and adversary}
1: for i = 1 ton do
2: dpat

i ← 1/n
3: dadv

i ← 1/n
4: end for
5: for i = 1 to |M | do
6: H← hittingTimes(Mi)
7: mht← 0
8: for j = 1 ton do
9: mhtj ← HTo f Pre f erredVertices(H)

10: end for
11: asc← sortAscending(mht)
12: desc← sortDescending(mht)
13: cpat← 1
14: cadv← 1
15: hh← n
16: for k= 1 ton do
17: cpat

asck ← cpat
asckhh

18: cadv
desck

← cadv
desck

hh
19: hh← hh−1
20: end for
21: p← 1
22: for k= 2 ton do
23: pk← 1/2k−2

24: end for
25: for k= 1 ton do
26: Pik← pkcpat

k +(1− pk)d
pat
k

27: Qik← pkcadv
k +(1− pk)d

adv
k

28: end for
29: end for
30: returnP,Q

Optimal Strategies Generation:
The probability distribution of choosing the strategies for the pa-

troller can be represented as an m-dimensional vector,

w= (w1,w2, ...,wm) (4)

Equation (5) should satisfy: 1)wi ≥ 0 for all i ∈ 1...m, and 2)
w1 +w2 ++wm = 1. The valuewi is the proportion of the
patroller choosing strategywi .

Similarly z represents all the possible strategies for the adversary
as a n-dimensional vector,

z= (z1,z2, ...,zn) (5)

Equation (6) should satisfy: 1)zi ∈ {0,1} for all i ∈ 1...n, and 2)
z1+z2++zn= 1. Since the adversary can attack any regionn∈
|V| in the environment, the adversary’s strategies,zi , are strategies
for attacking each region separately, and only one strategy can be
chosen.

DOBSS generates the optimal mixed strategy for the patroller
while considering an optimal adversarial response for all patrolling
strategies [11]. It considers reward-maximizing strategies for pa-
troller and cost-minimizing strategy for adversary.

4. EXPERIMENTAL RESULTS

4.1 Decentralized Patrolling Results:
We have compared our MACT method with the three patrolling

methods proposed by Agmon et al. [8]. In our approach, we place
patrollers on the graph either randomly or an equal distance from
each other (uniform) around the graph; Agmon et al’s three meth-
ods, BMP, DCP, DNCP, all require that patrollers are placed an
equal distance from each other on the graph. The patrollers are
mobile robots such as UAVs or wheeled robots. In Figure 1, we
show the mean first hitting time of MACT with both uniform and
random placement of patrollers compared to their three methods
on a graph of 64 vertices and 2016 edges, (K64 : 2016). Since their
methods require a cycle graph to be tested on, we have tested their
methods on a cycle graph of 64 vertices, (C64), which is assumed
to be equivalent to the Hamiltonian cycle of our original graph,
K64. In our test, we have simulated four patrollers so the distance
between two consecutive robots,d, is 16. We also consider the
number of state transitions it takes to penetrate the environment,
t, as 12 units. Though our approach does not use synchronization
and communication among robots, it still surpasses the mean hit-
ting time of one of their methods and performance does not degrade
much compared to other two.

We compare more closely our MACT method with DCP and
DNCP methods using varying number of patrollers on the graphs
mentioned above (K64 andC64). The result of this comparison is
shown in Table 1. It shows that the more patrollers are present on
the graph, the closer the first hitting times of DCP and DNCP’s
methods approach the data from our approach.

Table 1: Comparison of average first hitting time of our ap-
proach, MACT with uniform and random robot placement and
existing two methods (DCP, DNCP) for 30 experiments

No. of Patrollers Uniform
MACT

Random
MACT

DCP DNCP

2 (d=32, t=24) 30.35 30.58 17.29 20.85
4 (d=16, t=12) 14.22 14.70 9.26 11.74
8 (d=8, t=6) 7.11 7.30 5.90 6.90
16 (d=4, t=3) 3.21 3.40 3.1 3.16

We have also tested our methods on different types of graphs, in-
cluding line, tree, mesh, complete, and randomly generated graphs.
Figure 2 shows the edge weight allocation on different graphs [16]
for our MACT method. In each graph, the thickness of each edge
corresponds to the optimal edge weight value, or the probability of
that edge being chosen by a patroller. For example, a wider edge
connection between two vertices represents a high probability of
that edge being chosen for travel, and vice versa.

4.2 Game Theoretical Optimal Strategies Re-
sult:

We have tested DOBSS with a small graph [16] consisting of
eight vertices and thirteen edges. The patroller has ten patrolling
strategies available: eight which minimize the average commute
time towards each of eight vertices, one that minimizes the aver-
age commute time towards a subset of vertices or clique, and one
that minimizes the average commute time over all vertices. The
resulting graphs for all 10 patrolling strategies are shown in Fig 3.

As an illustration, payoff matrices of a small graph are shown in
Table 2, where the values of the payoff matrices for patroller and
adversary,P andQ, for ten patrolling strategies are calculated using
Algorithm 2.

(a) (b)

(c) (d)

Figure 2: Different types of Graph for MACT method: a) Edge
weight allocation on a line graph of 20 vertices; b) Edge weight
allocation on a tree with 30 vertices; c) Edge weight allocation
on a complete graph,K8; d) Edge weight allocation on a ran-
domly generated graph with 50 vertices and 200 edges.

DOBSS produces the optimal mixed strategy as shown in Ta-
ble 3. The patroller will patrol the graph with an optimal mixed
strategy consisting of strategies 7 and 9. Here the cost-minimizing
strategy for the adversary generates an optimal response for attack-
ing vertex 7 (i.e.z7 = 1,zi = 0, i 6= 7 for all i ∈ 1..n).

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced algorithms for finding dis-

tributed patrolling strategies for multiple robots based on Markov
chains which minimize the average commute time towards (1) a
specific vertex, (2) a subset of vertices, and (3) the average com-
mute time for all pairs of vertices in the graph. Methods (1) and
(2) use convex optimization and method (3) seeks shortest path in
graphs. Several interesting directions are left for future work as
described in further detail below.

Table 2: Payoff Matrices for Small Graph
v1 v2 v3 v4 v5 v6 v7 v8

P1 8.0000 1.5938 0.1543 0.1318 3.5625 0.3672 0.7344 0.2148
Q1 1.0000 0.8438 0.2324 0.1865 1.0625 0.4297 0.6094 0.3086
P2 0.2148 8.0000 1.5938 0.7344 0.1543 0.1318 0.3672 3.5625
Q2 0.3086 1.0000 0.8438 0.6094 0.2324 0.1865 0.4297 1.0625
P3 0.2148 1.5938 8.0000 3.5625 0.1543 0.1318 0.7344 0.3672
Q3 0.3086 0.8438 1.0000 1.0625 0.2324 0.1865 0.6094 0.4297
P4 0.3672 0.7344 3.5625 8.0000 0.1543 0.1318 0.2148 1.5938
Q4 0.4297 0.6094 1.0625 1.0000 0.2324 0.1865 0.3086 0.8438
P5 0.7344 0.3672 0.1543 0.1318 8.0000 3.5625 1.5938 0.2148
Q5 0.6094 0.4297 0.2324 0.1865 1.0000 1.0625 0.8438 0.3086
P6 0.3672 0.1543 0.7344 0.1318 3.5625 8.0000 1.5938 0.2148
Q6 0.4297 0.2324 0.6094 0.1865 1.0625 1.0000 0.8438 0.3086
P7 0.1318 1.5938 0.7344 0.1543 0.2148 0.3672 8.0000 3.5625
Q7 0.1865 0.8438 0.6094 0.2324 0.3086 0.4297 1.0000 1.0625
P8 0.2148 1.5938 0.3672 3.5625 0.1318 0.1543 0.7344 8.0000
Q8 0.3086 0.8438 0.4297 1.0625 0.1865 0.2324 0.6094 1.0000
PMACT 0.2148 3.5625 0.7344 0.1543 1.5938 0.1318 8.0000 0.3672
QMACT 0.3086 1.0625 0.6094 0.2324 0.8438 0.1865 1.0000 0.4297
PClique 0.7344 3.5625 0.1318 0.2148 1.5938 0.1543 0.3672 8.0000
QClique 0.6094 1.0625 0.1865 0.3086 0.8438 0.2324 0.4297 1.0000

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3: Edge weight allocation for ten patrolling strategies of
a small graph: a)-h) Edge weight allocation for minimizing av-
erage commute time towards vertex 1 to vertex 8 respectively;
i) Edge weight allocation for minimizing average commute time
preferring a clique or subset of vertices, 2,5,8; j) Edge weight
allocation for minimizing average commute time over all ver-
tices.

Table 3: Optimal Mixed Strategy Result for Small Graph
Patrolling Strategy No.,Mi Proportion of using Strategywi
1 0
2 0
3 0
4 0
5 0
6 0
7 0.9012
8 0
9 0.0988
10 0

One of the goals of our work was to remove the communica-
tion and localization requirements in [8] and extend the class of
graphs to which Markov chain based strategies can be applied.
Even though we have used simple Markov chain based strategies
for patrollers, one surprising result of our work seems to indicate
that our performance is better than BMP, despite the lack of com-
munication and synchronization when compared to that algorithm.
Further experimental tests and analytical tools are going to be used
to quantify the differences in performance between our approach
and existing methods.

Another immediate line of future work is the implementation
of our ideas in physical deployments. Since our approaches do
not require that we solve metric localization,1communication, or
synchronization problems, and the motions of the patrollers follow
simple Markov chains, so they can be implemented in inexpensive
robotic platforms. In order to apply our methods, we can take a
2D or 3D workspace with obstacles, create a grid where each el-
ement of the grid is a state in the Markov chain, and choose the
appropriate neighborhoods for transitions.

We also consider a game theoretical setup where the adversary
knows the strategies of the patroller (given as a set of Markov
chains) and responds optimally. We have proposed a set of pay-
off matrices for representing the game and find the optimal mixed
strategy for patrollers through DOBSS. In the game theoretical ex-
periment, for the 8 vertices and 13 edges example in Figure 3, we
have considered as strategies for the patroller Markov chains that
minimize commute times to each of the vertex, a Markov chain that
minimizes to a clique, and one that minimizes the average commute
time for all vertices. Interestingly, the optimal mixed strategy cho-
sen was a Markov chain that minimizes the commute time to the
vertex under attackv7 and a Markov chain that minimizes aver-
age commute time for all vertices. This validates our hypothesis
of minimizing average commute time for all vertices as a “good"
strategy for the patroller and shows that it is also important for the
patroller to guard the vertex under attack. In future work, we plan
to test our game theoretical setup in larger graphs and extend it to
multiple adversaries.

We plan to incorporate a less rational adversary in our frame-
work. In our current setup, the adversary has complete knowl-
edge of the environment and is assumed to be perfectly rational.
However, real world situations will involve adversaries that are less
knowledgeable and rational and more unpredictable. Because of
this, we wish to extend our ideas to use a more realistic adversarial
model to help test the true effectiveness of the patrolling policies.

1Recall from the discussion on page 2, the robots need only localize
to a vertex,i.e., topologically.

6. REFERENCES
[1] D. Portugal, and R. Rocha, “A Survey on Multi-robot

Patrolling Schemes," inProceedings of Doctoral Conference
on Computing, Electrical and Industrial Systems, Lisbon,
Portugal, 2011.

[2] William J. Stewart,Introduction to the Numerical Solution of
Markov Chains. Princeton University Press, 1994.

[3] Y. Chevaleyre, F. Sempé, and G. Ramalho, “A Theoretical
Analysis of Multi-Agent Patrolling Strategies," in
Proceedings of the third International on Autonomous Agents
and Multiagent Systems, pp. 1524-1525, August 2004.

[4] A. Almeida, G. Ramalho, H. Santana, P. A. Tedesco, T.
Menezes, V. Corruble, and Y. Chevaleyre, “Recent Advances
on Multi-agent Patrolling," inProceedings of the Brazilian
Symposium on Artificial Intelligence, vol. 3171, pp. 474-483,
Springer 2004.

[5] M. Ahmadi and P. Stone, “A multi-robot system for
continuous area sweeping task," inProceedings of the
International Conference on Robotics and Automation, pp.
1724-1729, May 2006.

[6] Y. Elmaliach, N. Agmon, and G. A. Kaminka, “A multi-robot
area petrol under frequency constraints," inProceedings of
the International Conference on Robotics and Automation,
pp. 385-390, May 2007.

[7] T. Sak, J. Wainer, and S. K. Goldenstein, “Probabilistic
Multiagent Patrolling," inProceedings of the Brazilian
Symposium on Artificial Intelligence, vol. 5249, pp. 124-133,
Springer 2008.

[8] N. Agmon, S. Kraus, and G. A. Kaminka, “Multi-robot
perimeter patrol in adversarial settings," inProceedings of
the International Conference on Robotics and Automation,
pp. 2339-2345, May 2008.

[9] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective
resistance of a graph," inSociety for Industrial and Applied
Mathematics Review, vol. 50, no. 1, pp. 37-66, 2008.

[10] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordóñez, S. Kraus,
“An efficient heuristic approach for security against multiple
adversaries," inProc. of the International Conference on
Autonomous Agents and Multiagent Systems, May 2007.

[11] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordóñez,
S. Kraus. “Playing Games for Security: An efficient exact
algorithm for solving bayesian stackelberg games," in
Proceedings of the Seventh International Conference on
Autonomous Agents and Multiagent Systems, pp. 895-902,
2008.

[12] N. Agmon, “On events in multi-robot patrol in adversarial
environments," inProceedings of the Ninth International
Conference on Autonomous Agents and Multiagent Systems,
pp. 591-598, 2010.

[13] D. Portugal and R. Rocha, “MSP Algorithm: Multi-robot
Patrolling Based on Territory Allocation Using Balanced
Graph Partitioning," inProceedings of Symposium on
Applied Computing, pp. 1271-1276, March 2010.

[14] N. Agmon, G. A. Kaminka, and S. Kraus, “Multi-robot
adversarial patrolling: facing a full-knowledge opponent,"
Journal of Artificial Intelligence Research, vol. 42, no. 1, pp.
887-916, September 2011.

[15] Yen’s Algorithm (September 2014) [Online].
Available:http://en.wikipedia.org/wiki/Yen.

[16] Convex Optimization in Matlab (September 2014) [Online].
Available: http://cvxr.com/cvx/examples/.

